New downstream synthetic route of 591-12-8

After consulting a lot of data, we found that this compound(591-12-8)Recommanded Product: 591-12-8 can be used in many types of reactions. And in most cases, this compound has more advantages.

Recommanded Product: 591-12-8. The mechanism of aromatic electrophilic substitution of aromatic heterocycles is consistent with that of benzene. Compound: 5-Methylfuran-2(3H)-one, is researched, Molecular C5H6O2, CAS is 591-12-8, about PON1 increases cellular DNA damage by lactone substrates. Author is Shangula, S.; Noori, M.; Ahmad, I.; Margison, G. P.; Liu, Y.; Siahmansur, T.; Soran, H.; Povey, A. C..

Paraoxonase 1 (PON1) is a high-d. lipoprotein (HDL)-associated enzyme that by hydrolyzing exogenous and endogenous substrates can provide protection against substrate induced toxicity. To investigate the extent to which PON1 provides protection against lactone induced DNA damage, DNA damage was measured in HepG2 cells using the neutral Comet assay following lactone treatment in the presence and absence of exogenous recombinant PON1 (rPON1). Low dose lactones (10 mM) caused little or no damage while high doses (100 mM) induced DNA damage in the following order of potency: α-angelica lactone > γ-butyrolactone > γ-hexalactone > γ-heptalactone > γ-octaclactone >γ-furanone > γ-valerolactone > γ-decalactone. Co-incubation of 100 mM lactone with rPON1, resulted in almost all cells showing extensive DNA damage, particularly with those lactones that decreased rPON1 activity by > 25%. DNA damage induced by a 1 h co-treatment with 10 mM α-angelica lactone and rPON1 was reduced when cells when incubated for a further 4 h in fresh medium suggesting break formation was due to induced DNA damage rather than apoptosis. These results suggest that in addition to its well-recognized detoxification effects, PON1 can increase genotoxicity potentially by hydrolyzing certain lactones to reactive intermediates that increase DNA damage via the formation of DNA adducts.

After consulting a lot of data, we found that this compound(591-12-8)Recommanded Product: 591-12-8 can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia