A C4N4 Diaminopyrimidine Fluorophore was written by Noda, Hidetoshi;Asada, Yasuko;Maruyama, Tatsuro;Takizawa, Naoki;Noda, Nobuo N.;Shibasaki, Masakatsu;Kumagai, Naoya. And the article was included in Chemistry – A European Journal in 2019.Computed Properties of C16H13N3 This article mentions the following:
A new scaffold for producing efficient organic fluorescent materials was identified: 2,5-diamino-4,6-diarylpyrimidine featuring a C4N4 elemental composition Single-step installation of two aryl groups at the 4,6-positions of the pyrimidine core delivered fluorescent organic materials in a modular fashion. A range of fluorescent compounds with distinct absorption/emission properties was readily accessed by changing the aromatic attachments. A generally high absorption coefficient and quantum yield were observed, including C4N4 derivatives that could fluoresce even in the solid state. The two amino groups at the 2,5-positions of the pyrimidine were essential for intense fluorescence with a large Stokes shift, which was corroborated by structural relaxation to a p-iminoquinone-like structure in the excited state. Besides live-cell imaging capabilities, fluorescent labeling of a protein involved in autophagy elucidated a new protein-protein interaction, supporting potential utility in bioimaging applications. In the experiment, the researchers used many compounds, for example, 4,6-Diphenylpyrimidin-2-amine (cas: 40230-24-8Computed Properties of C16H13N3).
4,6-Diphenylpyrimidin-2-amine (cas: 40230-24-8) belongs to pyrimidine derivatives. The aromatic compound pyrimidine, and its derivatives, are ubiquitous in nature. They are found in nucleic acids, vitamins, amino acids, antibiotics, alkaloids, and a variety of toxins. We all know its importance to life – pyrimidine and purine bases are included in the structure of DNA and RNA.Computed Properties of C16H13N3
Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia