Pyrimidine is a nitrogenous base similar to benzene (a six-membered ring) and includes cytosine, thymine, and uracil as bases used for DNA or RNA. 1722-12-9, formula is C4H3ClN2, Name is 2-Chloropyrimidine. Pyrimidine also found in many synthetic compounds such as barbiturates and the HIV drug, zidovudine. Name: 2-Chloropyrimidine.
Ostrovskii, Vladimir A.;Danagulyan, Gevorg G.;Nesterova, Olga M.;Pavlyukova, Yulia N.;Tolstyakov, Vladimir V.;Zarubina, Olga S.;Slepukhin, Pavel A.;Esaulkova, Yana L.;Muryleva, Anna A.;Zarubaev, Vladimir V.;Trifonov, Rostislav E. research published 《 Synthesis and antiviral activity of nonannulated tetrazolylpyrimidines》, the research content is summarized as follows. Nonannulated tetrazolylpyrimidines in the structure of which the heterocyclic fragments were separated by hydrazinocarbonylmethyl I [R = H, Me], methylpyrazolyl II, groups or a sulfur atom III [R1 = Ph; R2 = H; R1 = CH2CO2H, R2 = Me] were synthesized. Some of these compounds showed moderate in vitro activity against H1N1 subtype of influenza A virus. The selectivity index of the anti-influenza action of {5-[(4,6-dimethylpyrimidin-2-yl)sulfanyl]-1H-tetrazol-1-yl}acetic acid, which had very low cytotoxicity, was twice as high as the selectivity index of the reference drug rimantadine.
Name: 2-Chloropyrimidine, 2-Chloropyrimidine is a monochlorinated pyrimidine with plant growth regulating activity. Chloropyrimidine is a useful reagent in the preparation of antivirals and other biologically active compounds.
2-Chloropyrimidine undergoes cobalt-catalyzed cross-coupling reaction with aryl halides.
2-Chloropyrimidine is a molecule that can be synthesized by the oxidation of pyrimidine with hydrogen peroxide and hydrochloric acid. The reaction proceeds through an electrochemical process in which the oxidation catalyst is a platinum electrode. This reaction is catalyzed by the nucleophilic attack of malonic acid on the chloropyrimidine at the methylene group. This efficient method for making 2-chloropyrimidine has been applied to synthesize aryl halides, including phenyl chloropyrimidine and pyridyl chloropyrimidine, from their corresponding chloride and bromide precursors. The fluorescence properties of 2-chloropyrimidine have been studied in coordination chemistry, where it forms complexes with metal ions such as Mn2+. In this study, it was found that adsorption mechanisms are dependent on molecular size, charge density, kinetic energy, and adsorbent surface area., 1722-12-9.
Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia