Plotnik, David A. et al. published their research in Journal of Nuclear Medicine in 2010 | CAS: 69256-17-3

1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (cas: 69256-17-3) belongs to pyrimidine derivatives. The aromatic compound pyrimidine, and its derivatives, are ubiquitous in nature. They are found in nucleic acids, vitamins, amino acids, antibiotics, alkaloids, and a variety of toxins. We all know its importance to life – pyrimidine and purine bases are included in the structure of DNA and RNA.Formula: C10H13FN2O5

Different modes of transport for 3H-thymidine, 3H-FLT and 3H-FMAU in proliferating and nonproliferating human tumor cells was written by Plotnik, David A.; Emerick, Lindsay E.; Krohn, Kenneth A.; Unadkat, Jashvant D.; Schwartz, Jeffrey L.. And the article was included in Journal of Nuclear Medicine on September 30,2010.Formula: C10H13FN2O5 The following contents are mentioned in the article:

The basis for the use of nucleoside tracers in PET is that activity of the cell-growth-dependent enzyme thymidine kinase 1 is the rate-limiting factor driving tracer retention in tumors. Recent publications suggest that nucleoside transporters might influence uptake and thereby affect the tracer signal in vivo. Understanding transport mechanisms for different nucleoside PET tracers is important for evaluating clin. results. This study examined the relative role of different nucleoside transport mechanisms in uptake and retention of [methyl-3H]-3′-deoxy-3′-fluorothymidine (3H-FLT), [methyl-3H]-thymidine (3H-thymidine), and 3H-1-(2-deoxy-2-fluoro-β-D-arabinofuranosyl)-5-methyluracil (3H-FMAU). Methods: Transport of 3H-FLT, 3H-thymidine, and 3H-FMAU was examined in a single human adenocarcinoma cell line, A549, under both nongrowth and exponential-growth conditions. Results: 3H-Thymidine transport was dominated by human equilibrative nucleoside transporter 1 (hENT1) under both growth conditions. 3H-FLT was also transported by hENT1, but passive diffusion dominated its transport. 3H-FMAU transport was dominated by human equilibrative nucleoside transporter 2. Cell membrane levels of hENT1 increased in cells under exponential growth, and this increase was associated with a more rapid rate of uptake for both 3H-thymidine and 3H-FLT. 3H-FMAU transport was not affected by changes in growth conditions. All 3 tracers concentrated in the plateau phase, nonproliferating cells at levels many-fold greater than their concentration in buffer, in part because of low levels of nucleoside metabolism, which inhibited tracer efflux. Conclusion: Transport mechanisms are not the same for 3H-thymidine, 3H-FLT, and 3H-FMAU. Levels of hENT1, an important transporter of 3H-FLT and 3H-thymidine, increase as proliferating cells enter the cell cycle. This study involved multiple reactions and reactants, such as 1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (cas: 69256-17-3Formula: C10H13FN2O5).

1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (cas: 69256-17-3) belongs to pyrimidine derivatives. The aromatic compound pyrimidine, and its derivatives, are ubiquitous in nature. They are found in nucleic acids, vitamins, amino acids, antibiotics, alkaloids, and a variety of toxins. We all know its importance to life – pyrimidine and purine bases are included in the structure of DNA and RNA.Formula: C10H13FN2O5

69256-17-3;1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione;The future of 69256-17-3;New trend of C10H13FN2O5;function of 69256-17-3