Inhibition of the Histone H3K27 Demethylase UTX Enhances Tumor Cell Radiosensitivity was written by Rath, Barbara H.;Waung, Isabella;Camphausen, Kevin;Tofilon, Philip J.. And the article was included in Molecular Cancer Therapeutics in 2018.Recommanded Product: 1373423-53-0 The following contents are mentioned in the article:
The processes mediating the repair of DNA double-strand breaks (DSB) are critical determinants of radiosensitivity and provide a source of potential targets for tumor radiosensitization. Among the events required for efficient DSB repair are a variety of post-translational histone modifications, including methylation. Because trimethylation of histone H3 on lysine 27 (H3K27me3) has been associated with chromatin condensation, which can influence DSB repair, we determined the effects of radiation on H3K27me3 levels in tumor and normal cell lines. Irradiation of tumor cells resulted in a rapid loss of H3K27me3, which was prevented by the siRNA-mediated knockdown of the H3K27 demethylase UTX. Knockdown of UTX also enhanced the radiosensitivity of each tumor cell line. Treatment of tumor cells with the H3K27 demethylase inhibitor GSKJ4 immediately before irradiation prevented the radiation-induced decrease in H3K27me3 and enhanced radiosensitivity. As determined by neutral comet anal. and γH2AX expression, this GSKJ4 treatment protocol inhibited the repair of radiation-induced DSBs. Consistent with in vitro results, treatment of mice bearing leg tumor xenografts with GSKJ4 significantly enhance radiation-induce tumor growth delay. In contrast with results generated from tumor cell lines, radiation had no effect on H3K27me3 levels in normal fibroblast cell lines and GSKJ4 did not enhance their radiosensitivity. These data suggest that H3K27me3 demethylation contributes to DSB repair in tumor cells and that UTX, the demethylase responsible, provides a target for selective tumor cell radiosensitization. This study involved multiple reactions and reactants, such as Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0Recommanded Product: 1373423-53-0).
Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0) belongs to pyrimidine derivatives. Heterocyclic compounds bearing the pyrimidine core are of tremendous interest as they constitute an important class of natural and synthetic compounds exhibiting diverse useful biological activities that hold attractive potential for clinical translation as therapeutic agents in alleviation of a myriad of diseases. For example, the neurotoxin tetrodotoxin is a pyrimidine derivative. It is found in a number of species including the Japanese puffer fish, the blue-ringed octopus, and the orange-bellied newt. Tetrodotoxin prevents the transmission of nerve signals and can result in paralysis and death.Recommanded Product: 1373423-53-0
Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia