Synthesis and evaluation of 2-(2,6-dihalophenyl)-3-pyrimidinyl-1,3-thiazolidin-4-one analogues as anti-HIV-1 agents was written by Rawal, Ravindra K.;Tripathi, Rajkamal;Katti, S. B.;Pannecouque, Christophe;De Clercq, Erik. And the article was included in Bioorganic & Medicinal Chemistry in 2007.Application In Synthesis of 4,6-Diphenylpyrimidin-2-amine This article mentions the following:
A series of 2-(2,6-dihalophenyl)-3-(substituted pyrimidinyl)-1,3-thiazolidin-4-ones were designed on the prediction of quant. structure-activity relationship (QSAR) studies, synthesized, and evaluated as HIV-1 reverse transcriptase inhibitors. Our attempts in correlating the identified mol. surface features related properties for modeling the HIV-1 RT inhibitory activity resulted in some statistically significant QSAR models with good predictive ability. The results showed that compounds 4m (I, R1 = Cl) and 4n (I, R1 = F) were highly active in inhibiting HIV-1 replication with EC50 values in the range of 22-28 nM in MT-4 as well as in CEM cells with selectivity indexes of >10,000. The derived models collectively suggest that the compounds should be compact without bulky substitution on its peripheries for better HIV-1 RT inhibitory activity. These models also indicate a preference for hydrophobic compounds to obtain good HIV-1 RT inhibitory activity. In the experiment, the researchers used many compounds, for example, 4,6-Diphenylpyrimidin-2-amine (cas: 40230-24-8Application In Synthesis of 4,6-Diphenylpyrimidin-2-amine).
4,6-Diphenylpyrimidin-2-amine (cas: 40230-24-8) belongs to pyrimidine derivatives. Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. A Cu-catalyzed and 4-HO-TEMPO-mediated [3 + 3] annulation of commercially available amidines with saturated ketones enables an efficient and facile synthesis of structurally important pyrimidines via a cascade reaction of oxidative dehydrogenation/annulation/oxidative aromatization.Application In Synthesis of 4,6-Diphenylpyrimidin-2-amine
Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia