Shinya, Susumu team published research in Chemical & Pharmaceutical Bulletin in 2021 | 1722-12-9

1722-12-9, 2-Chloropyrimidine is a monochlorinated pyrimidine with plant growth regulating activity. Chloropyrimidine is a useful reagent in the preparation of antivirals and other biologically active compounds.
2-Chloropyrimidine undergoes cobalt-catalyzed cross-coupling reaction with aryl halides.
2-Chloropyrimidine is a molecule that can be synthesized by the oxidation of pyrimidine with hydrogen peroxide and hydrochloric acid. The reaction proceeds through an electrochemical process in which the oxidation catalyst is a platinum electrode. This reaction is catalyzed by the nucleophilic attack of malonic acid on the chloropyrimidine at the methylene group. This efficient method for making 2-chloropyrimidine has been applied to synthesize aryl halides, including phenyl chloropyrimidine and pyridyl chloropyrimidine, from their corresponding chloride and bromide precursors. The fluorescence properties of 2-chloropyrimidine have been studied in coordination chemistry, where it forms complexes with metal ions such as Mn2+. In this study, it was found that adsorption mechanisms are dependent on molecular size, charge density, kinetic energy, and adsorbent surface area., Safety of 2-Chloropyrimidine

The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives, including the nucleotides cytosine, thymine and uracil, thiamine (vitamin B1) and alloxan. 1722-12-9, formula is C4H3ClN2, Name is 2-Chloropyrimidine. It is also found in many synthetic compounds such as barbiturates and the HIV drug, zidovudine. Safety of 2-Chloropyrimidine.

Shinya, Susumu;Kawai, Kentaro;Tarui, Atsushi;Karuo, Yukiko;Sato, Kazuyuki;Matsuda, Masaya;Kitatani, Kazuyuki;Kobayashi, Naoki;Nabe, Takeshi;Otsuka, Masato;Omote, Masaaki research published 《 Importance of the azole moiety of cimetidine derivatives for the inhibition of human multidrug and toxin extrusion transporter 1 (hMATE1)》, the research content is summarized as follows. The design and synthesis of cimetidine analogs, as well as their inhibitory activity toward the human multidrug and toxin extrusion transporter 1 (hMATE1), which is related to nephrotoxicity of drugs was described. Cimetidine is the histamine H2-receptor antagonist, but also inhibits hMATE1, which is known to cause renal impairment. Cimetidine analogs to evaluate hMATE1 inhibitory activity to reveal whether the analogs could reduce the inhibition of hMATE1 was designed and synthesized. The results showed that all analogs with an unsubstituted guanidino group exhibited hMATE1 inhibitory activity. On the other hand, there was a clear difference in the hMATE1 inhibitory activity for the other compounds That is, compounds with a methylimidazole ring exhibited hMATE1 inhibition, while compounds with a Ph ring did not. The results suggest that the ability to form hydrogen bonds at the azole moiety is strongly involved in the hMATE1 inhibition.

1722-12-9, 2-Chloropyrimidine is a monochlorinated pyrimidine with plant growth regulating activity. Chloropyrimidine is a useful reagent in the preparation of antivirals and other biologically active compounds.
2-Chloropyrimidine undergoes cobalt-catalyzed cross-coupling reaction with aryl halides.
2-Chloropyrimidine is a molecule that can be synthesized by the oxidation of pyrimidine with hydrogen peroxide and hydrochloric acid. The reaction proceeds through an electrochemical process in which the oxidation catalyst is a platinum electrode. This reaction is catalyzed by the nucleophilic attack of malonic acid on the chloropyrimidine at the methylene group. This efficient method for making 2-chloropyrimidine has been applied to synthesize aryl halides, including phenyl chloropyrimidine and pyridyl chloropyrimidine, from their corresponding chloride and bromide precursors. The fluorescence properties of 2-chloropyrimidine have been studied in coordination chemistry, where it forms complexes with metal ions such as Mn2+. In this study, it was found that adsorption mechanisms are dependent on molecular size, charge density, kinetic energy, and adsorbent surface area., Safety of 2-Chloropyrimidine

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia