Smee, Donald F. et al. published their research in Antiviral Research in 1985 | CAS: 69256-17-3

1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (cas: 69256-17-3) belongs to pyrimidine derivatives. Heterocyclic compounds bearing the pyrimidine core are of tremendous interest as they constitute an important class of natural and synthetic compounds exhibiting diverse useful biological activities that hold attractive potential for clinical translation as therapeutic agents in alleviation of a myriad of diseases. A Cu-catalyzed and 4-HO-TEMPO-mediated [3 + 3] annulation of commercially available amidines with saturated ketones enables an efficient and facile synthesis of structurally important pyrimidines via a cascade reaction of oxidative dehydrogenation/annulation/oxidative aromatization.HPLC of Formula: 69256-17-3

Comparative anti-herpesvirus activities of 9-(1,3-dihydroxy-2-propoxymethyl)guanine, acyclovir, and two 2′-fluoropyrimidine nucleosides was written by Smee, Donald F.; Campbell, Nancy L.; Matthews, Thomas R.. And the article was included in Antiviral Research on October 31,1985.HPLC of Formula: 69256-17-3 The following contents are mentioned in the article:

9-(1,3-Dihydroxy-2-propoxymethyl)guanine (DHPG) [82410-32-0], was evaluated in cell culture and in animals for its inhibitory effect on herpes simplex viruses. Compounds used for comparison included acyclovir  [59277-89-3], 2′-fluoro-2′-deoxy-5-iodoarabinofuranosylcytosine (FIAC) [69123-90-6], and 2′-fluoro-2′-deoxy-5-methylarabinofuranosyluracil (FMAU) [69256-17-3]. In plaque-reduction assays DHPG, acyclovir, FIAC, and FMAU were inhibitory to 6 herpes types 1 and 2 virus strains at concentrations of 0.2-2.4 μM. These concentrations were much lower than those required to inhibit Vero cell proliferation. In guinea pig vaginal infections, DHPG provided significantly greater inhibition of herpetic lesions than did acyclovir. In a herpes type 2 infection model in mice, DHPG, and FMAU were active at 5 mg/kg, whereas acyclovir and FIAC showed no statistically significant effect at 80 mg/kg. In a herpes type 1 encephalitis model, DHPG and FMAU were active at doses <10 mg/kg, with FMAU being about 4 times more potent than DHPG in that model. This study involved multiple reactions and reactants, such as 1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (cas: 69256-17-3HPLC of Formula: 69256-17-3).

1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (cas: 69256-17-3) belongs to pyrimidine derivatives. Heterocyclic compounds bearing the pyrimidine core are of tremendous interest as they constitute an important class of natural and synthetic compounds exhibiting diverse useful biological activities that hold attractive potential for clinical translation as therapeutic agents in alleviation of a myriad of diseases. A Cu-catalyzed and 4-HO-TEMPO-mediated [3 + 3] annulation of commercially available amidines with saturated ketones enables an efficient and facile synthesis of structurally important pyrimidines via a cascade reaction of oxidative dehydrogenation/annulation/oxidative aromatization.HPLC of Formula: 69256-17-3

69256-17-3;1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione;The future of 69256-17-3;New trend of C10H13FN2O5;function of 69256-17-3