Adding a certain compound to certain chemical reactions, such as: 14394-70-8, 2-Chloro-5-methylpyrimidin-4-amine, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound, Formula: C5H6ClN3, blongs to pyrimidines compound. Formula: C5H6ClN3
[0126] 2-chloro-5-methyl-pyrimidin-4-ylamine (0.408 g, 2.83 mmol, 1 equiv), 4-Bromo- 1,2-dichloro-benzene (0.704 g, 3.12 mmol, 1.1 equiv), cesium carbonate (2.8 g, 8.49 mmol, 3 equiv), 4,5-bis(diphenylphosrhohino)-9,9-dimethyl xanthene (0.328 g5 0.57 mmol, 0.2 equiv) and tris(dibenzylideneacetone) dipalladium (0.26 g, 0.283 mmol, 0.1 equiv) were combined in 30ml microwave vessel. Reactants were then diluted with 12ml dioxane and microwaved for 25 minutes at 160 0C. Reaction vessel was then spun down, decanted and evaporated to dryness. Resulting solids were diluted with DCM and adsorbed onto silica gel. Chromatography (gradient of 15% ethyl acetate in hexanes up to 80% ethyl acetate in hexanes) afforded the title intermediate 19 as a pale yellow powder (0.366 g, 45% yield). MS (ESI+): 287.97 (M+H), r.t. = 3.12 min.
At the same time, in my other blogs, there are other synthetic methods of this type of compound,14394-70-8, 2-Chloro-5-methylpyrimidin-4-amine, and friends who are interested can also refer to it.
Reference:
Patent; TARGEGEN, INC.; WO2007/53452; (2007); A1;,
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia