In the chemical reaction process,reaction time,type of solvent,can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product.An updated downstream synthesis route of 36315-01-2 as follows., 36315-01-2
EXAMPLE 1 N-(2-Chloroimidazo[1,2-a]pyridine-3-ylsulfonyl)-N’-(4,6-dimethoxy-2-pyrimidinyl)urea (Compound No. 1) STR55 In 30 ml of acetonitrile are dissolved 2.32 g (0.01 mole) of 2-chloroimidazo[1,2-a]pyridine-3-sulfonamide and 2.02 g (0.02 mole) of triethylamine, followed by addition of 1.60 g (0.01 mole) of phenyl chloroformate with stirring at 10 to 20 C. The mixture is further stirred at 20 to 25 C. for 30 minutes, and to the mixture are added 1.00 g (0.010 mole) of methanesulfonic acid and then 1.55 g (0.01 mole) of 2-amino-4,6-dimethoxypyrimidine. The mixture is stirred at 60 C. for 15 minutes. After cooling, the crystals which separates out are collected by filtration and washed with water 3 times with 10 ml of water each. The crystals were then dried in vacuo over P2 O5 to give 3.42 g (yield 83.0%) of the title compound. m.p. 183-184 C. (decomp.). NMR (DMSO-d6) delta: 3.95 (s, 6H), 6.0 (s, 1H), 7.3-7.5 (m, 1H), 7.5-7.9 (m, 2H), 8.97 (d, 1H), 10.65 (s, 1H), 12.8 (s, 1H).
The chemical industry reduces the impact on the environment during synthesis 36315-01-2, I believe this compound will play a more active role in future production and life.
Reference:
Patent; Takeda Chemical Industries, Ltd.; US4994571; (1991); A;,
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia