Discovery, synthesis, selectivity modulation and DMPK characterization of 5-azaspiro[2.4]heptanes as potent orexin receptor antagonists was written by Stasi, Luigi Piero;Artusi, Roberto;Bovino, Clara;Buzzi, Benedetta;Canciani, Luca;Caselli, Gianfranco;Colace, Fabrizio;Garofalo, Paolo;Giambuzzi, Silvia;Larger, Patrice;Letari, Ornella;Mandelli, Stefano;Perugini, Lorenzo;Pucci, Sabrina;Salvi, Matteo;Toro, PierLuigi. And the article was included in Bioorganic & Medicinal Chemistry Letters in 2013.Reference of 16879-39-3 This article mentions the following:
Starting from an orexin 1 receptor selective antagonist 4,4-disubstituted piperidine series, a novel potent 5-azaspiro[2.4]heptane dual orexin 1 and orexin 2 receptor antagonist class has been discovered. SAR and pharmacokinetic optimization of this series is herein disclosed. Lead compound I exhibits potent activity against orexin 1 and orexin 2 receptors along with low cytochrome P 450 inhibition potential, good brain penetration and oral bioavailability in rats. In the experiment, the researchers used many compounds, for example, 2-Bromo-4,6-dimethylpyrimidine (cas: 16879-39-3Reference of 16879-39-3).
2-Bromo-4,6-dimethylpyrimidine (cas: 16879-39-3) belongs to pyrimidine derivatives. Pyrimidine also found in many synthetic compounds such as barbiturates and the HIV drug, zidovudine. A Cu-catalyzed and 4-HO-TEMPO-mediated [3 + 3] annulation of commercially available amidines with saturated ketones enables an efficient and facile synthesis of structurally important pyrimidines via a cascade reaction of oxidative dehydrogenation/annulation/oxidative aromatization.Reference of 16879-39-3
Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia