Sun, Yuanhui team published research in ACS Applied Materials & Interfaces in 2021 | 1722-12-9

COA of Formula: C4H3ClN2, 2-Chloropyrimidine is a monochlorinated pyrimidine with plant growth regulating activity. Chloropyrimidine is a useful reagent in the preparation of antivirals and other biologically active compounds.
2-Chloropyrimidine undergoes cobalt-catalyzed cross-coupling reaction with aryl halides.
2-Chloropyrimidine is a molecule that can be synthesized by the oxidation of pyrimidine with hydrogen peroxide and hydrochloric acid. The reaction proceeds through an electrochemical process in which the oxidation catalyst is a platinum electrode. This reaction is catalyzed by the nucleophilic attack of malonic acid on the chloropyrimidine at the methylene group. This efficient method for making 2-chloropyrimidine has been applied to synthesize aryl halides, including phenyl chloropyrimidine and pyridyl chloropyrimidine, from their corresponding chloride and bromide precursors. The fluorescence properties of 2-chloropyrimidine have been studied in coordination chemistry, where it forms complexes with metal ions such as Mn2+. In this study, it was found that adsorption mechanisms are dependent on molecular size, charge density, kinetic energy, and adsorbent surface area., 1722-12-9.

The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives, including the nucleotides cytosine, thymine and uracil, thiamine (vitamin B1) and alloxan. 1722-12-9, formula is C4H3ClN2, Name is 2-Chloropyrimidine. It is also found in many synthetic compounds such as barbiturates and the HIV drug, zidovudine. COA of Formula: C4H3ClN2.

Sun, Yuanhui;Liu, Bochen;Guo, Yue;Chen, Xi;Lee, Yi-Ting;Feng, Zhao;Adachi, Chihaya;Zhou, Guijiang;Chen, Zhao;Yang, Xiaolong research published 《 Developing Efficient Dinuclear Pt(II) Complexes Based on the Triphenylamine Core for High-Efficiency Solution-Processed OLEDs》, the research content is summarized as follows. The various applications of dinuclear complexes have attracted increasing attention. However, the electroluminescence efficiencies of dinuclear Pt(II) complexes are far from satisfactory. Herein, based on the triphenylamine core, we develop four dinuclear Pt(II) complexes that cover the emission colors from yellow to red with high photoluminescence quantum efficiencies of up to 0.79 in doped films. The solid-state structure of PyDPt is revealed by the single-crystal X-ray diffraction investigation. Besides, solution-processed OLEDs have been fabricated with different electron transport materials. With higher electron mobility and excellent hole-blocking ability, 1,3,5-tri(m-pyridin-3-ylphenyl)benzene (TmPyPB) can help to realize good charge balance in related OLEDs. In addition, angle-dependent PL spectra reveal the preferentially horizontal orientation of these dinuclear Pt(II) complexes in doped CBP films, which benefits the outcoupling efficiencies. Therefore, the yellow OLED based on PyDPt shows unexpected high performance with a peak current efficiency of up to 78.7 cd/A and an external quantum efficiency of up to 22.4%, which is the highest EQE reported for OLEDs based on dinuclear Pt(II) complexes so far. This study demonstrates the great potential of developing dinuclear Pt(II) complexes for achieving excellent electroluminescence efficiencies.

COA of Formula: C4H3ClN2, 2-Chloropyrimidine is a monochlorinated pyrimidine with plant growth regulating activity. Chloropyrimidine is a useful reagent in the preparation of antivirals and other biologically active compounds.
2-Chloropyrimidine undergoes cobalt-catalyzed cross-coupling reaction with aryl halides.
2-Chloropyrimidine is a molecule that can be synthesized by the oxidation of pyrimidine with hydrogen peroxide and hydrochloric acid. The reaction proceeds through an electrochemical process in which the oxidation catalyst is a platinum electrode. This reaction is catalyzed by the nucleophilic attack of malonic acid on the chloropyrimidine at the methylene group. This efficient method for making 2-chloropyrimidine has been applied to synthesize aryl halides, including phenyl chloropyrimidine and pyridyl chloropyrimidine, from their corresponding chloride and bromide precursors. The fluorescence properties of 2-chloropyrimidine have been studied in coordination chemistry, where it forms complexes with metal ions such as Mn2+. In this study, it was found that adsorption mechanisms are dependent on molecular size, charge density, kinetic energy, and adsorbent surface area., 1722-12-9.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia