Li, Liren et al. published their research in Brain, Behavior, and Immunity in 2021 | CAS: 1373423-53-0

Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0) belongs to pyrimidine derivatives. The pyrimidine nitrogenous bases are derived from the organic compound pyrimidine through the addition of various functional groups. Therapy for fungal infections is based mainly on four classes of antifungals: azoles, echinocandins, polyenes, and pyrimidine analogs.Category: pyrimidines

KDM6B epigenetically regulated-interleukin-6 expression in the dorsal root ganglia and spinal dorsal horn contributes to the development and maintenance of neuropathic pain following peripheral nerve injury in male rats was written by Li, Liren;Bai, Liying;Yang, Kangli;Zhang, Jian;Gao, Yan;Jiang, Mingjun;Yang, Yin;Zhang, Xuan;Wang, Li;Wang, Xueli;Qiao, Yiming;Xu, Ji-Tian. And the article was included in Brain, Behavior, and Immunity in 2021.Category: pyrimidines The following contents are mentioned in the article:

The lysine specific demethylase 6B (KDM6B) has been implicated as a coregulator in the expression of proinflammatory mediators, and in the pathogenesis of inflammatory and arthritic pain. However, the role of KDM6B in neuropathic pain has yet to be studied. In the current study, the neuropathic pain was determined by assessing the paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) following lumbar 5 spinal nerve ligation (SNL) in male rats. Immunohistochem., Western blotting, qRT-PCR, and chromatin immunoprecipitation (ChIP)-PCR assays were performed to investigate the underlying mechanisms. Our results showed that SNL led to a significant increase in KDM6B mRNA and protein in the ipsilateral L4/5 dorsal root ganglia (DRG) and spinal dorsal horn; and this increase correlated a markedly reduction in the level of H3K27me3 methylation in the same tissue. Double immunofluorescence staining revealed that the KDM6B expressed in myelinated A- and unmyelinated C-fibers in the DRG; and located in neuronal cells, astrocytes, and microglia in the dorsal horn. Behavioral data showed that SNL-induced mech. allodynia and thermal hyperalgesia were impaired by the treatment of prior to i.t. injection of GSK-J4, a specific inhibitor of KDM6B, or KDM6B siRNA. Both microinjection of AAV2-EGFP-KDM6B shRNA in the lumbar 5 dorsal horn and sciatic nerve, sep., alleviated the neuropathic pain following SNL. The established neuropathic pain was also partially attenuated by repeat i.t. injections of GSK-J4 or KDM6B siRNA, started on day 7 after SNL. SNL also resulted in a remarkable increased expression of interleukin-6 (IL-6) in the DRG and dorsal horn. But this increase was dramatically inhibited by i.t. injection of GSK-J4 and KDM6B siRNA; and suppressed by prior to microinjection of AAV2-EGFP-KDM6B shRNA in the dorsal horn and sciatic nerve. Of ChIP-PCR assay showed that SNL-induced enhanced binding of STAT3 with IL-6 promoter was inhibited by prior to i.t. injection of GSK-J4. Meanwhile, the level of H3K27me3 methylation was also decreased by the treatment. Together, our results indicate that SNL-induced upregulation of KDM6B via demethylating H3K27me3 facilitates the binding of STAT3 with IL-6 promoter, and subsequently mediated-increase in the expression of IL-6 in the DRG and dorsal horn contributes to the development and maintenance of neuropathic pain. Targeting KDM6B might a promising therapeutic strategy to treatment of chronic pain. This study involved multiple reactions and reactants, such as Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0Category: pyrimidines).

Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0) belongs to pyrimidine derivatives. The pyrimidine nitrogenous bases are derived from the organic compound pyrimidine through the addition of various functional groups. Therapy for fungal infections is based mainly on four classes of antifungals: azoles, echinocandins, polyenes, and pyrimidine analogs.Category: pyrimidines

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Jiang, Xiulin et al. published their research in Frontiers in Molecular Biosciences in 2022 | CAS: 1373423-53-0

Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0) belongs to pyrimidine derivatives. The pyrimidine derivatives can easily interact with enzymes, genetic materials, and bio components within the cell. Drugs having the pyrimidine motif have manifested to exhibit gratifying biological activity like anticancer, antiviral, anti-inflammatory, antibacterial, and antihypertensive activities.Related Products of 1373423-53-0

The N6-methylandenosine-related gene BIRC5 as a prognostic biomarker correlated with cell migration and immune cell infiltrates in low grade glioma was written by Jiang, Xiulin;Shi, Yulin;Chen, Xi;Xu, Haitao;Huang, Xiaobin;Li, Lihua;Pu, Jun. And the article was included in Frontiers in Molecular Biosciences in 2022.Related Products of 1373423-53-0 The following contents are mentioned in the article:

Gliomas account for 75% of all primary malignant brain tumors in adults and are associated with high mortality. Emerging evidence has demonstrated that baculoviral inhibitor of apoptosis repeat containing 5 (BIRC5) plays a critical role in cell apoptosis and the progression of diverse cancers. However, no studies have yet focused on the immunol. function and mechanisms of upstream BIRC5 regulation in the progression of low-grade gliomas (LGG). Here, author evaluated BIRC5 expression and clin. characteristics in people with LGG using the Chinese Glioma Genome Atlas, The Cancer Genome Atlas, Gene Expression Omnibus, Rembrandt, and Gravendeel databases. Author used Kaplan-Meier statistics and receiver operating characteristic (ROC) curves to analyze the prognostic value of BIRC5 in LGG. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontol. (GO) enrichment terms were also explored to identify functional roles of BIRC5. The Tumor Immune Estimation Resource (TIMER) and Tumor Immune System Interaction (TISIDB) databases were used to examine the correlation between BIRC5 expression and immune cell infiltration in LGG. The Genomics of Drug Sensitivity in Cancer (GDSC) and Cancer Therapeutics Response Portal (CTRP) databases were used to examine the potential drugs targeting BIRC5. Author used transwell and wound healing assays to determine the biol. functions of BIRC5 in glioma cell migration. Author results demonstrated that BIRC5 was highly expressed in LGG and the expression level correlated with tumor grade, prognosis, histol. subtype, isocitrate dehydrogenase 1 (IDH1) mutation, 1p/19q chromosomal co-deletion, chemotherapy status, and O[6]-methylguanine-DNA methyltransferase (MGMT) promoter methylation status. GO and KEGG anal. showed that BIRC5 is primarily involved in cell proliferation and immune response-related signaling pathways. Author also found that BIRC5 was significantly correlated with m6A modification and diverse drug sensitivity. TIMER and TISIDB database anal. showed that BIRC5 expression is associated with infiltration of diverse immune cells and immune modulation in LGG. BIRC5 knockdown inhibited LGG cell migration. Collectively, author results demonstrate that BIRC5 is correlated with cell migration and immune infiltration in LGG and may be a useful prognostic biomarker. This study involved multiple reactions and reactants, such as Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0Related Products of 1373423-53-0).

Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0) belongs to pyrimidine derivatives. The pyrimidine derivatives can easily interact with enzymes, genetic materials, and bio components within the cell. Drugs having the pyrimidine motif have manifested to exhibit gratifying biological activity like anticancer, antiviral, anti-inflammatory, antibacterial, and antihypertensive activities.Related Products of 1373423-53-0

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Mason, Lawrence David et al. published their research in Cancers in 2021 | CAS: 1373423-53-0

Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0) belongs to pyrimidine derivatives. The aromatic compound pyrimidine, and its derivatives, are ubiquitous in nature. They are found in nucleic acids, vitamins, amino acids, antibiotics, alkaloids, and a variety of toxins. Therapy for fungal infections is based mainly on four classes of antifungals: azoles, echinocandins, polyenes, and pyrimidine analogs.Recommanded Product: Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate

The BRD9/7 Inhibitor TP-472 Blocks Melanoma Tumor Growth by Suppressing ECM-Mediated Oncogenic Signaling and Inducing Apoptosis was written by Mason, Lawrence David;Chava, Suresh;Reddi, Kiran Kumar;Gupta, Romi. And the article was included in Cancers in 2021.Recommanded Product: Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate The following contents are mentioned in the article:

Melanoma is an aggressive form of skin cancer and the leading cause of skin cancer-related deaths. Current therapies, including those targeting oncogenic pathways and immunotherapies, provide therapeutic benefits to only a subset of melanoma patients. Therefore, more options for therapeutic interventions are needed. Epigenetic alterations play an important role in tumor development and progression. In this study, we identified that TP-472 a small mol. inhibitor of BRD7/9 blocks melanoma tumor growth in cell cultures and in mouse models of melanoma growth. Further studies revealed that TP-472 downregulates cancer-promoting signaling pathways and induces cell death. Thus, this study identifies TP-472 as a potentially useful therapeutic agent for melanoma therapy. Abstract: Melanoma accounts for the majority of all skin cancer-related deaths and only 1/3rd of melanoma patients with distal metastasis survive beyond five years. However, current therapies including BRAF/MEK targeted therapies or immunotherapies only benefit a subset of melanoma patients due to the emergence of intrinsic or extrinsic resistance mechanisms. Effective treatment of melanoma will thus require new and more effective therapeutic agents. Towards the goal of identifying new therapeutic agents, we conducted an unbiased, druggable epigenetic drug screen using a library of 32 epigenetic inhibitors obtained from the Structural Genome Consortium that targets proteins encoding for epigenetic regulators. This chem. genetic screening identified TP-472, which targets bromodomain-7/9, as the strongest inhibitor of melanoma growth in both short- and long-term survival assays and in mouse models of melanoma tumor growth. Mechanistically, using a transcriptome-wide mRNA sequencing profile we identified TP-472 treatment downregulates genes encoding various extracellular matrix (ECM) proteins, including integrins, collagens, and fibronectins. Reactome-based functional pathway analyses revealed that many of the ECM proteins are involved in extracellular matrix interactions required for cancer cell growth and proliferation. TP-472 treatment also upregulated several pro-apoptotic genes that can inhibit melanoma growth. Collectively, our results identify BRD7/9 inhibitor TP-472 as a potentially useful therapeutic agent for melanoma therapy. This study involved multiple reactions and reactants, such as Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0Recommanded Product: Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate).

Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0) belongs to pyrimidine derivatives. The aromatic compound pyrimidine, and its derivatives, are ubiquitous in nature. They are found in nucleic acids, vitamins, amino acids, antibiotics, alkaloids, and a variety of toxins. Therapy for fungal infections is based mainly on four classes of antifungals: azoles, echinocandins, polyenes, and pyrimidine analogs.Recommanded Product: Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Yildirim-Buharalioglu, Gokce et al. published their research in Molecular Pharmacology in 2022 | CAS: 1373423-53-0

Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0) belongs to pyrimidine derivatives. Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. Pyrimidine derivatives also play an important role in drug development, either in concert with other compounds or on their own.Formula: C24H27N5O2

Lysine demethylase 6B regulates prostate cancer cell proliferation by controlling c-MYC expression was written by Yildirim-Buharalioglu, Gokce. And the article was included in Molecular Pharmacology in 2022.Formula: C24H27N5O2 The following contents are mentioned in the article:

Elevated expression of lysine demethylase 6A (KDM6A) and lysine demethylase 6B (KDM6B) has been reported in prostate cancer (PCa). However, the mechanism underlying the specific role of KDM6A/B in PCa is still fragmentary. Here, we report novel KDM6A/B downstream targets involved in controlling PCa cell proliferation. KDM6A and KDM6B mRNAs were higher in prostate adenocarcinoma, lymph node metastatic site (LNCaP) but not in prostate adenocarcinoma, bone metastatic site (PC3) and prostate adenocarcinoma, brain metastatic site (DU145) cells. Higher KDM6A mRNA was confirmed at the protein level. A metastasis associated gene focused oligonucleotide array was performed to identify KDM6A/B dependent genes in LNCaP cells treated with a KDM6 family selective inhibitor, ethyl-3-(6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-ylamino)propanoate (GSK-J4). This identified five genes [V-myc myelocytomatosis viral oncogene homolog (avian) (c-MYC), neurofibromin 2 (merlin) (NF2), C-terminal binding protein 1 (CTBP1), EPH receptor B2 (EPHB2), and plasminogen activator urokinase receptor (PLAUR)] that were decreased more than 50% by GSK-J4, and c-MYC was the most downregulated gene. Array data were validated by quant. reverse transcription polymerase chain reaction (qRT-PCR), which detected a reduction in c-MYC steady state mRNA and prespliced mRNA, indicative of transcriptional repression of c-MYC gene expression. Furthermore, c-MYC protein was also decreased by GSK-J4. Importantly, GSK-J4 reduced mRNA and protein levels of c-MYC target gene, cyclinD1 (CCND1). Silencing of KDM6A/B with small interfering RNA (siRNA) confirmed that expression of both c-MYC and CCND1 are dependent on KDM6B. Phosphorylated retinoblastoma (pRb), a marker of G1 to S-phase transition, was decreased by GSK-J4 and KDM6B silencing. GSK-J4 treatment resulted in a decrease in cell proliferation and cell number, detected by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) assay and conventional cell counting, resp. Consequently, we conclude that KDM6B controlling c-MYC, CCND1, and pRb contribute regulation of PCa cell proliferation, which represents KDM6B as a promising epigenetic target for the treatment of advanced PCa. This study involved multiple reactions and reactants, such as Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0Formula: C24H27N5O2).

Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0) belongs to pyrimidine derivatives. Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. Pyrimidine derivatives also play an important role in drug development, either in concert with other compounds or on their own.Formula: C24H27N5O2

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Francis, M. et al. published their research in Journal of Dental Research in 2020 | CAS: 1373423-53-0

Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0) belongs to pyrimidine derivatives. Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. As nucleotides in DNA and RNA, pyrimidine nucleotide derivatives have a wide range of biological applications. For example, pyrimidine derivatives are useful in DNA repair studies involving cancer and epigenetics.Recommanded Product: Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate

Histone Methylation: Achilles Heel and Powerful Mediator of Periodontal Homeostasis was written by Francis, M.;Gopinathan, G.;Foyle, D.;Fallah, P.;Gonzalez, M.;Luan, X.;Diekwisch, T. G. H.. And the article was included in Journal of Dental Research in 2020.Recommanded Product: Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate The following contents are mentioned in the article:

The packaging of DNA around nucleosomes exerts dynamic control over eukaryotic gene expression either by granting access to the transcriptional machinery in an open chromatin state or by silencing transcription via chromatin compaction. Histone methylation modification affects chromatin through the addition of Me groups to lysine or arginine residues of histones H3 and H4 by means of histone Me transferases or histone demethylases. Changes in histone methylation state modulate periodontal gene expression and have profound effects on periodontal development, health, and therapy. At the onset of periodontal development, progenitor cell populations such as dental follicle cells are characterized by an open H3K4me3 chromatin mark on RUNX2, MSX2, and DLX5 gene promoters. During further development, periodontal progenitor differentiation undergoes a global switch from the H3K4me3 active Me mark to the H3K27me3 repressive mark. When compared with dental pulp cells, periodontal neural crest lineage differentiation is characterized by repressive H3K9me3 and H3K27me3 marks on typical dentinogenesis-related genes. Inflammatory conditions as they occur during periodontal disease result in unique histone methylation signatures in affected cell populations, including repressive H3K9me3 and H3K27me3 histone marks on extracellular matrix gene promoters and active H3K4me3 marks on interleukin, defensin, and chemokine gene promoters, facilitating a rapid inflammatory response to microbial pathogens. The inflammation-induced repression of chromatin on extracellular matrix gene promoters presents a therapeutic opportunity for the application of histone methylation inhibitors capable of inhibiting suppressive trimethylation marks. Furthermore, inhibition of chromatin coregulators through interference with key inflammatory mediators such as NF-kB by means of methyltransferase inhibitors provides another avenue to halt the exacerbation of the inflammatory response in periodontal tissues. In conclusion, histone methylation dynamics play an intricate role in the fine-tuning of chromatin states during periodontal development and harbor yet-to-be-realized potential for the treatment of periodontal disease. This study involved multiple reactions and reactants, such as Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0Recommanded Product: Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate).

Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0) belongs to pyrimidine derivatives. Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. As nucleotides in DNA and RNA, pyrimidine nucleotide derivatives have a wide range of biological applications. For example, pyrimidine derivatives are useful in DNA repair studies involving cancer and epigenetics.Recommanded Product: Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Dugar, Sundeep’s team published research in Bioorganic & Medicinal Chemistry Letters in 2015 | CAS: 1190423-36-9

tert-Butyl (tert-butoxycarbonyl)(5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyrimidin-2-yl)carbamate(cas: 1190423-36-9) belongs to pyrimidine. Pyrimidine nucleotide derivatives have a wide range of biological applications. For example, pyrimidine derivatives are useful in DNA repair studies involving cancer and epigenetics.Product Details of 1190423-36-9

Dugar, Sundeep; Hollinger, Frank P.; Kuila, Bilash; Arora, Reena; Sen, Somdutta; Mahajan, Dinesh published their research in Bioorganic & Medicinal Chemistry Letters on August 15 ,2015. The article was titled 《Synthesis and evaluation of pyrrolotriazine based molecules as PI3 kinase inhibitors》.Product Details of 1190423-36-9 The article contains the following contents:

Over activation of the PI3K/Akt/mTOR pathway is found in most cancer tumor types. Controlled regulation of this pathway using PI3K inhibitors can provide therapeutic significance in cancer treatment. Herein, we report the synthesis and evaluation of pyrrolotriazine based novel small mols. as pan-PI3K inhibitors. The SAR studies based on in vitro potency along with microsomal metabolic stability screening, identified one compound I as a preclin. lead found to be suitable for in vivo evaluation. The identified lead was also found to be a selective inhibitor of PI3K isoforms and mTOR when screened across a panel of 23 homologous kinases. The experimental part of the paper was very detailed, including the reaction process of tert-Butyl (tert-butoxycarbonyl)(5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyrimidin-2-yl)carbamate(cas: 1190423-36-9Product Details of 1190423-36-9)

tert-Butyl (tert-butoxycarbonyl)(5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyrimidin-2-yl)carbamate(cas: 1190423-36-9) belongs to pyrimidine. Pyrimidine nucleotide derivatives have a wide range of biological applications. For example, pyrimidine derivatives are useful in DNA repair studies involving cancer and epigenetics.Product Details of 1190423-36-9

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia