Jecklin, Matthias Conradin et al. published their research in Analytical Chemistry (Washington, DC, United States) in 2009 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. The aromatic compound pyrimidine, and its derivatives, are ubiquitous in nature. They are found in nucleic acids, vitamins, amino acids, antibiotics, alkaloids, and a variety of toxins. We all know its importance to life – pyrimidine and purine bases are included in the structure of DNA and RNA.SDS of cas: 219580-11-7

Affinity Classification of Kinase Inhibitors by Mass Spectrometric Methods and Validation Using Standard IC50 Measurements was written by Jecklin, Matthias Conradin;Touboul, David;Jain, Rishi;Naggar Toole, Estee;Tallarico, John;Drueckes, Peter;Ramage, Paul;Zenobi, Renato. And the article was included in Analytical Chemistry (Washington, DC, United States) in 2009.SDS of cas: 219580-11-7 The following contents are mentioned in the article:

Protein kinases have emerged as a major drug target in the last years. Since more than 500 kinases are encoded in the human genome, cross-reactivity of a majority of kinase inhibitors causes problems. Tools are required for a rapid classification of inhibitors according to their affinity for a certain target to refine the search for new, more specific lead compounds Mass spectrometry (MS) is increasingly used in pharmaceutical research and drug discovery to investigate protein-ligand interactions and determination of binding affinities. We present a comparison of different existing nanoelectrospray-MS based methods to quantify binding affinities and qual. rank, by competitive experiments, the affinity of several clin. inhibitors. We also present a new competitive method which is derived from our previous work for quant. assessment of binding strengths. The human kinases studied for this purpose were p38α (MAPK14) and LCK (lymphocyte specific kinase), and their interaction with 17 known small mol. kinase inhibitors was probed. Moreover, we present a new method to differentiate type I from type II inhibitors based on a kinetic experiment with direct MS read-out of the noncovalent complex between the human kinase and the inhibitor. This method was successfully applied to p38α binding to BIRB796, as well as to a BIRB796 analog. Quant. determination of the binding strength is also described. The results of our competitive experiments for the affinity classification of different inhibitors, as well as the results for the kinetic study, are in good agreement with IC50 measurements and data found in the literature. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7SDS of cas: 219580-11-7).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. The aromatic compound pyrimidine, and its derivatives, are ubiquitous in nature. They are found in nucleic acids, vitamins, amino acids, antibiotics, alkaloids, and a variety of toxins. We all know its importance to life – pyrimidine and purine bases are included in the structure of DNA and RNA.SDS of cas: 219580-11-7

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Trzcinska-Daneluti, Agata M. et al. published their research in Molecular and Cellular Proteomics in 2012 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. Pyrimidine derivatives also play an important role in drug development, either in concert with other compounds or on their own.Name: 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea

Use of kinase inhibitors to correct ΔF508-CFTR function was written by Trzcinska-Daneluti, Agata M.;Nguyen, Leo;Jiang, Chong;Fladd, Christopher;Uehling, David;Prakesch, Michael;Al-Awar, Rima;Rotin, Daniela. And the article was included in Molecular and Cellular Proteomics in 2012.Name: 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea The following contents are mentioned in the article:

The most common mutation in cystic fibrosis (CF) is a deletion of Phe at position 508 (ΔF508-CFTR). ΔF508-CFTR is a trafficking mutant that is retained in the ER, unable to reach the plasma membrane. To identify compounds and drugs that rescue this trafficking defect, we screened a kinase inhibitor library enriched for small mols. already in the clinic or in clin. trials for the treatment of cancer and inflammation, using our recently developed high-content screen technol. The top hits of the screen were further validated by (1) biochem. anal. to demonstrate the presence of mature (Band C) ΔF508-CFTR, (2) flow cytometry to reveal the presence of ΔF508-CFTR at the cell surface, (3) short-circuit current (Isc) anal. in Ussing chambers to show restoration of function of the rescued ΔF508-CFTR in epithelial MDCK cells stably expressing this mutant (including EC50 determinations), and importantly (4) Isc anal. of Human Bronchial Epithelial (HBE) cells harvested from homozygote ΔF508-CFTR transplant patients. Interestingly, several inhibitors of receptor Tyr kinases (RTKs), such as SU5402 and SU6668 (which target FGFRs, VEGFR, and PDGFR) exhibited strong rescue of ΔF508-CFTR, as did several inhibitors of the Ras/Raf/MEK/ERK or p38 pathways (e.g. (5Z)-7-oxozeaenol). Prominent rescue was also observed by inhibitors of GSK-3β (e.g. GSK-3β Inhibitor II and Kenpaullone). These results identify several kinase inhibitors that can rescue ΔF508-CFTR to various degrees, and suggest that use of compounds or drugs already in the clinic or in clin. trials for other diseases can expedite delivery of treatment for CF patients. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7Name: 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. Pyrimidine derivatives also play an important role in drug development, either in concert with other compounds or on their own.Name: 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Jaiswal, Bijay S. et al. published their research in Clinical Cancer Research in 2018 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. Drugs having the pyrimidine motif have manifested to exhibit gratifying biological activity like anticancer, antiviral, anti-inflammatory, antibacterial, and antihypertensive activities.Recommanded Product: 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea

ERK mutations and amplification confer resistance to ERK-inhibitor therapy was written by Jaiswal, Bijay S.;Durinck, Steffen;Stawiski, Eric W.;Yin, Jianping;Wang, Weiru;Lin, Eva;Moffat, John;Martin, Scott E.;Modrusan, Zora;Seshagiri, Somasekar. And the article was included in Clinical Cancer Research in 2018.Recommanded Product: 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea The following contents are mentioned in the article:

Purpose: MAPK pathway inhibitors targeting BRAF and MEK have shown clin. efficacy in patients with RAF- and/or RAS-mutated tumors. However, acquired resistance to these agents has been an impediment to improved long-term survival in the clinic. In such cases, targeting ERK downstream of BRAF/MEK has been proposed as a potential strategy for overcoming acquired resistance. Preclin. studies suggest that ERK inhibitors are effective at inhibiting BRAF/RAS-mutated tumor growth and overcome BRAF or/and MEK inhibitor resistance. However, as observed with other MAPK pathway inhibitors, treatment with ERK inhibitors is likely to cause resistance in the clinic. Here, we aimed to model the mechanism of resistance to ERK inhibitors. Exptl. Design: We tested five structurally different ATP-competitive ERK inhibitors representing three different scaffolds on BRAF/RAS-mutant cancer cell lines of different tissue types to generate resistant lines. We have used in vitro modeling, structural biol., and genomic anal. to understand the development of resistance to ERK inhibitors and the mechanisms leading to it. Results: We have identified mutations in ERK1/2, amplification and overexpression of ERK2, and overexpression of EGFR/ERBB2 as mechanisms of acquired resistance. Structural anal. of ERK showed that specific compounds that induced on-target ERK mutations were impaired in their ability to bind mutant ERK. We show that in addition to MEK inhibitors, ERBB receptor and PI3K/mTOR pathway inhibitors are effective in overcoming ERK-inhibitor resistance. Conclusions: These findings suggest that combination therapy with MEK or ERBB receptor or PI3K/mTOR and ERK inhibitors may be an effective strategy for managing the emergence of resistance in the clinic. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7Recommanded Product: 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. Drugs having the pyrimidine motif have manifested to exhibit gratifying biological activity like anticancer, antiviral, anti-inflammatory, antibacterial, and antihypertensive activities.Recommanded Product: 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Sepult, Christelle et al. published their research in Oncogene in 2019 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidines are isomeric with two other forms of diazines: pyridazine, with the nitrogen atoms in the 1 and 2 positions; and pyrazine, with the nitrogen atoms in the 1 and 4 positions. Drugs having the pyrimidine motif have manifested to exhibit gratifying biological activity like anticancer, antiviral, anti-inflammatory, antibacterial, and antihypertensive activities.Related Products of 219580-11-7

ADAM10 mediates malignant pleural mesothelioma invasiveness was written by Sepult, Christelle;Bellefroid, Marine;Rocks, Natacha;Donati, Kim;Gerard, Catherine;Gilles, Christine;Ludwig, Andreas;Duysinx, Bernard;Noel, Agnes;Cataldo, Didier. And the article was included in Oncogene in 2019.Related Products of 219580-11-7 The following contents are mentioned in the article:

Malignant pleural mesothelioma (MPM) is an aggressive cancer with limited therapeutic options and treatment efficiency. Even if the latency period between asbestos exposure, the main risk factor, and mesothelioma development is very long, the local invasion of mesothelioma is very rapid leading to a mean survival of one year after diagnosis. ADAM10 (A Disintegrin And Metalloprotease) sheddase targets membrane-bound substrates and its overexpression is associated with progression in several cancers. However, nothing is known about ADAM10 implication in MPM. In this study, we demonstrated higher ADAM10 expression levels in human MPM as compared to control pleural samples and in human MPM cell line. This ADAM10 overexpression was also observed in murine MPM samples. Two mouse mesothelioma cell lines were used in this study including one primary cell line obtained by repeated asbestos fiber injections. We show, in vitro, that ADAM10 targeting through shRNA and pharmacol. (GI254023X) approaches reduced drastically mesothelioma cell migration and invasion, as well as for human mesothelioma cells treated with siRNA targeting ADAM10. Moreover, ADAM10 downregulation in murine mesothelioma cells significantly impairs MPM progression in vivo after intrapleural cell injection. We also demonstrate that ADAM10 sheddase downregulation decreases the production of a soluble N-cadherin fragment through membrane N-cadherin, which stimulated mesothelioma cell migration. Taken together, we demonstrate that ADAM10 is overexpressed in MPM and takes part to MPM progression through the generation of N-cadherin fragment that stimulates mesothelioma cell migration. ADAM10 inhibition is worth considering as a therapeutic perspective in mesothelioma context. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7Related Products of 219580-11-7).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidines are isomeric with two other forms of diazines: pyridazine, with the nitrogen atoms in the 1 and 2 positions; and pyrazine, with the nitrogen atoms in the 1 and 4 positions. Drugs having the pyrimidine motif have manifested to exhibit gratifying biological activity like anticancer, antiviral, anti-inflammatory, antibacterial, and antihypertensive activities.Related Products of 219580-11-7

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Zheng, Yaguo et al. published their research in Journal of Cardiovascular Pharmacology in 2015 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidines are isomeric with two other forms of diazines: pyridazine, with the nitrogen atoms in the 1 and 2 positions; and pyrazine, with the nitrogen atoms in the 1 and 4 positions. Therapy for fungal infections is based mainly on four classes of antifungals: azoles, echinocandins, polyenes, and pyrimidine analogs.Application In Synthesis of 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea

Inhibition of FGFR signaling with PD173074 ameliorates monocrotaline-induced pulmonary arterial hypertension and rescues BMPR-II Expression was written by Zheng, Yaguo;Ma, Hong;Hu, Enci;Huang, Zhiwei;Cheng, Xiaoling;Xiong, Changming. And the article was included in Journal of Cardiovascular Pharmacology in 2015.Application In Synthesis of 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea The following contents are mentioned in the article:

Background: Numerous studies have demonstrated that fibroblast growth factor-2 (FGF-2) signaling may play a pivotal role in the development of pulmonary arterial hypertension (PAH). Excessive endothelial FGF-2 contributes to smooth muscle hyperplasia and disease progression. PD173074 is a potent FGF receptor 1 (FGFR-1) inhibitor that displays high activity and selectivity. The aim of this study was to investigate the effects of PD173074 on monocrotaline-induced PAH. We also evaluated whether FGFR-1 inhibition could attenuate bone morphogenetic protein type II receptor (BMPR-II) downregulation in the monocrotaline model. Methods: PAH model was established by a single i.p. injection of monocrotaline. And then a daily i.p. injection of PD173074 (20 mg/kg) was administered from day 14 to day 28. Hemodynamic parameters, right ventricular hypertrophy index and morphometry were evaluated at day 28. Western blot and immunohistochem. analyses were used to determine the expression of FGF-2 and bone morphogenetic protein signaling in the lung tissue. Results: The expression of FGF-2 and FGFR-1 was upregulated in lung tissue after monocrotaline injection and it was accompanied by hemodynamic changes and pulmonary vascular remodeling. PD173074 treatment ameliorated PAH and vascular remodeling. It decreased ERK1/2 activation and rescued total Akt expression, leading to a reduction in both proliferation and apoptosis in the lung. Besides, PD173074 rescued the expression of BMPR-II and p-Smad 1/5/8. Conclusion: These results suggest that PD173074 can alleviate monocrotaline-induced pulmonary arterial hypertension and it may be a useful option for PAH. Our data also suggest a role of FGF-2/bone morphogenetic protein signaling interaction in PAH. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7Application In Synthesis of 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidines are isomeric with two other forms of diazines: pyridazine, with the nitrogen atoms in the 1 and 2 positions; and pyrazine, with the nitrogen atoms in the 1 and 4 positions. Therapy for fungal infections is based mainly on four classes of antifungals: azoles, echinocandins, polyenes, and pyrimidine analogs.Application In Synthesis of 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Packer, Leisl M. et al. published their research in Molecular Oncology in 2019 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidines are isomeric with two other forms of diazines: pyridazine, with the nitrogen atoms in the 1 and 2 positions; and pyrazine, with the nitrogen atoms in the 1 and 4 positions. As nucleotides in DNA and RNA, pyrimidine nucleotide derivatives have a wide range of biological applications. For example, pyrimidine derivatives are useful in DNA repair studies involving cancer and epigenetics.Synthetic Route of C28H41N7O3

Bcl-2 inhibitors enhance FGFR inhibitor-induced mitochondrial-dependent cell death in FGFR2-mutant endometrial cancer was written by Packer, Leisl M.;Stehbens, Samantha J.;Bonazzi, Vanessa F.;Gunter, Jennifer H.;Ju, Robert J.;Ward, Micheal;Gartside, Michael G.;Byron, Sara A.;Pollock, Pamela M.. And the article was included in Molecular Oncology in 2019.Synthetic Route of C28H41N7O3 The following contents are mentioned in the article:

Endometrial cancer is the most commonly diagnosed gynaecol. malignancy. Unfortunately, 15-20% of women demonstrate persistent or recurrent tumors that are refractory to current chemotherapies. We previously identified activating mutations in fibroblast growth factor receptor 2 (FGFR2) in 12% (stage I/II) to 17% (stage III/IV) endometrioid ECs and found that these mutations are associated with shorter progression-free and cancer-specific survival. Although FGFR inhibitors are undergoing clin. trials for treatment of several cancer types, little is known about the mechanism by which they induce cell death. We show that treatment with BGJ398, AZD4547 and PD173074 causes mitochondrial depolarization, cytochrome c release and impaired mitochondrial respiration in two FGFR2-mutant EC cell lines (AN3CA and JHUEM2). Despite this mitochondrial dysfunction, we were unable to detect caspase activation following FGFR inhibition; in addition, the pan-caspase inhibitor Z-VAD-FMK was unable to prevent cell death, suggesting that the cell death is caspase-independent. Furthermore, while FGFR inhibition led to an increase in LC3 puncta, treatment with bafilomycin did not further increase lipidated LC3, suggesting that FGFR inhibition led to a block in autophagosome degradation We confirmed that cell death is mitochondrial-dependent as it can be blocked by overexpression of Bcl-2 and/or Bcl-XL. Importantly, we show that combining FGFR inhibitors with the BH3 mimetics ABT737/ABT263 markedly increased cell death in vitro and is more effective than BGJ398 alone in vivo, where it leads to marked tumor regression. This work may have implications for the design of clin. trials to treat a wide range of patients with FGFR-dependent malignancies. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7Synthetic Route of C28H41N7O3).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidines are isomeric with two other forms of diazines: pyridazine, with the nitrogen atoms in the 1 and 2 positions; and pyrazine, with the nitrogen atoms in the 1 and 4 positions. As nucleotides in DNA and RNA, pyrimidine nucleotide derivatives have a wide range of biological applications. For example, pyrimidine derivatives are useful in DNA repair studies involving cancer and epigenetics.Synthetic Route of C28H41N7O3

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Quispel-Janssen, Josine M. et al. published their research in Clinical Cancer Research in 2018 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Heterocyclic compounds bearing the pyrimidine core are of tremendous interest as they constitute an important class of natural and synthetic compounds exhibiting diverse useful biological activities that hold attractive potential for clinical translation as therapeutic agents in alleviation of a myriad of diseases. Pyrimidine derivatives have been used in a wide variety of pharmaceuticals including general anesthetics, anti-epilepsy medication, anti-malaria medication, drugs for treating high blood pressure, and HIV medication.Computed Properties of C28H41N7O3

Comprehensive Pharmacogenomic Profiling of Malignant Pleural Mesothelioma Identifies a Subgroup Sensitive to FGFR Inhibition was written by Quispel-Janssen, Josine M.;Badhai, Jitendra;Schunselaar, Laurel;Price, Stacey;Brammeld, Jonathan;Iorio, Francesco;Kolluri, Krishna;Garnett, Matthew;Berns, Anton;Baas, Paul;McDermott, Ultan;Neefjes, Jacques;Alifrangis, Constantine. And the article was included in Clinical Cancer Research in 2018.Computed Properties of C28H41N7O3 The following contents are mentioned in the article:

Purpose: Despite intense research, treatment options for patients with mesothelioma are limited and offer only modest survival advantage. We screened a large panel of compounds in multiple mesothelioma models and correlated sensitivity with a range of mol. features to detect biomarkers of drug response. Exptl. design: We utilized a high-throughput chem. inhibitor screen in a panel of 889 cancer cell lines, including both immortalized and primary early-passage mesothelioma lines, alongside comprehensive mol. characterization using Illumina whole-exome sequencing, copy-number anal. and Affymetrix array whole transcriptome profiling. Subsequent validation was done using functional assays such as siRNA silencing and mesothelioma mouse xenograft models. Results: A subgroup of immortalized and primary MPM lines appeared highly sensitive to FGFR inhibition. None of these lines harbored genomic alterations of FGFR family members, but rather BAP1 protein loss was associated with enhanced sensitivity to FGFR inhibition. This was confirmed in an MPM mouse xenograft model and by BAP1 knockdown and overexpression in cell line models. Gene expression analyses revealed an association between BAP1 loss and increased expression of the receptors FGFR1/3 and ligands FGF9/18. BAP1 loss was associated with activation of MAPK signaling. These associations were confirmed in a cohort of MPM patient samples. Conclusions: A subgroup of mesotheliomas cell lines harbor sensitivity to FGFR inhibition. BAP1 protein loss enriches for this subgroup and could serve as a potential biomarker to select patients for FGFR inhibitor treatment. These data identify a clin. relevant MPM subgroup for consideration of FGFR therapeutics in future clin. studies. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7Computed Properties of C28H41N7O3).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Heterocyclic compounds bearing the pyrimidine core are of tremendous interest as they constitute an important class of natural and synthetic compounds exhibiting diverse useful biological activities that hold attractive potential for clinical translation as therapeutic agents in alleviation of a myriad of diseases. Pyrimidine derivatives have been used in a wide variety of pharmaceuticals including general anesthetics, anti-epilepsy medication, anti-malaria medication, drugs for treating high blood pressure, and HIV medication.Computed Properties of C28H41N7O3

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Rezzola, Sara et al. published their research in Angiogenesis in 2017 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidine also found in many synthetic compounds such as barbiturates and the HIV drug, zidovudine. As nucleotides in DNA and RNA, pyrimidine nucleotide derivatives have a wide range of biological applications. For example, pyrimidine derivatives are useful in DNA repair studies involving cancer and epigenetics.Computed Properties of C28H41N7O3

3D endothelial cell spheroid/human vitreous humor assay for the characterization of anti-angiogenic inhibitors for the treatment of proliferative diabetic retinopathy was written by Rezzola, Sara;Nawaz, Imtiaz M.;Cancarini, Anna;Ravelli, Cosetta;Calza, Stefano;Semeraro, Francesco;Presta, Marco. And the article was included in Angiogenesis in 2017.Computed Properties of C28H41N7O3 The following contents are mentioned in the article:

Proliferative diabetic retinopathy (PDR) represents a main cause of acquired blindness. Despite the recognition of the key role exerted by vascular endothelial growth factor (VEGF) in the pathogenesis of PDR, limitations to anti-VEGF therapies do exist. Thus, rapid and cost-effective angiogenesis assays are crucial for the screening of anti-angiogenic drug candidates for PDR therapy. In this context, evaluation of the angiogenic potential of PDR vitreous fluid may represent a valuable tool for preclin. assessment of angiostatic mols. Here, vitreous fluid obtained from PDR patients after pars plana vitrectomy was used as a pro-angiogenic stimulus in a 3D endothelial cell spheroid/human vitreous assay. The results show that PDR vitreous is able to stimulate the sprouting of fibrin-embedded HUVEC spheroids in a time- and dose-dependent manner. A remarkable variability was observed among 40 individual vitreous fluid samples in terms of sprouting-inducing activity that was related, at least in part, to defined clin. features of the PDR patient. This activity was hampered by various extracellular and intracellular signaling pathway inhibitors, including the VEGF antagonist ranibizumab. When tested on 20 individual vitreous fluid samples, the inhibitory activity of ranibizumab ranged between 0 and 100% of the activity measured in the absence of the drug, reflecting a variable contribution of angiogenic mediators distinct from VEGF. In conclusion, the 3D endothelial cell spheroid/human vitreous assay represents a rapid and cost-effective exptl. procedure suitable for the evaluation of the anti-angiogenic activity of novel extracellular and intracellular drug candidates, with possible implications for the therapy of PDR. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7Computed Properties of C28H41N7O3).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidine also found in many synthetic compounds such as barbiturates and the HIV drug, zidovudine. As nucleotides in DNA and RNA, pyrimidine nucleotide derivatives have a wide range of biological applications. For example, pyrimidine derivatives are useful in DNA repair studies involving cancer and epigenetics.Computed Properties of C28H41N7O3

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Ye, Tinghong et al. published their research in Breast Cancer Research and Treatment in 2014 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidines are isomeric with two other forms of diazines: pyridazine, with the nitrogen atoms in the 1 and 2 positions; and pyrazine, with the nitrogen atoms in the 1 and 4 positions. Therapy for fungal infections is based mainly on four classes of antifungals: azoles, echinocandins, polyenes, and pyrimidine analogs.Synthetic Route of C28H41N7O3

Inhibition of FGFR signaling by PD173074 improves antitumor immunity and impairs breast cancer metastasis was written by Ye, Tinghong;Wei, Xiawei;Yin, Tao;Xia, Yong;Li, Deliang;Shao, Bin;Song, Xuejiao;He, Sisi;Luo, Min;Gao, Xiang;He, Zhiyao;Luo, Can;Xiong, Ying;Wang, Ningyu;Zeng, Jun;Zhao, Lifeng;Shen, Guobo;Xie, Yongmei;Yu, Luoting;Wei, Yuquan. And the article was included in Breast Cancer Research and Treatment in 2014.Synthetic Route of C28H41N7O3 The following contents are mentioned in the article:

Aberrant fibroblast growth factor (FGF) and FGF receptor (FGFR) system have been associated with breast cancer. The objectives of our study were to investigate the effects and mechanisms of FGFR inhibition on tumor growth and metastasis on breast cancer. Our studies showed that the FGFR inhibitor PD173074 decreased the viability of several human breast cancer cells, as well as 4T1 murine mammary tumor cells. Therefore, we chose 4T1 cells to study PD173074’s antitumor mechanism. Flow cytometry showed that PD173074 induced 4T1 cell apoptosis in a concentration-dependent manner. Western blot demonstrated that PD173074-induced apoptosis was correlated with the inhibition of Mcl-1 and survivin. Moreover, PD173074 also significantly increased the ratio of Bax/Bcl-2. PD173074 could also block 4T1 cell migration and invasion in vitro. In 4T1 tumor-bearing mice, PD173074 significantly inhibited tumor growth without obvious side effects. Meanwhile, PD173074 functionally reduced microvessel d. and proliferation index and induced tumor apoptosis. Importantly, we found that FGFR inhibition by PD173074 reduced myeloid-derived suppressor cells (MDSCs) in the blood, spleens and tumors, accompanied by the increased infiltration of CD4+ and CD8+ T cells in the spleens and tumors. Furthermore, PD173074 significantly inhibited breast tumor metastasis to the lung of inoculated 4T1 breast cancer cells, which was accompanied by a reduction in MDSCs. Our findings suggested that FGFR inhibition could delay breast tumor progression, impair lung metastasis and break immunosuppression by effecting on tumor microenvironment, which may provide a promising therapeutic approach for breast cancer patient. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7Synthetic Route of C28H41N7O3).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidines are isomeric with two other forms of diazines: pyridazine, with the nitrogen atoms in the 1 and 2 positions; and pyrazine, with the nitrogen atoms in the 1 and 4 positions. Therapy for fungal infections is based mainly on four classes of antifungals: azoles, echinocandins, polyenes, and pyrimidine analogs.Synthetic Route of C28H41N7O3

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Boshoff, Eugene. L. et al. published their research in Neuropharmacology in 2018 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives. Pyrimidine derivatives have been used in a wide variety of pharmaceuticals including general anesthetics, anti-epilepsy medication, anti-malaria medication, drugs for treating high blood pressure, and HIV medication.Electric Literature of C28H41N7O3

Fibroblast growth factor 20 is protective towards dopaminergic neurons in vivo in a paracrine manner was written by Boshoff, Eugene. L.;Fletcher, Edward. J. R.;Duty, Susan. And the article was included in Neuropharmacology in 2018.Electric Literature of C28H41N7O3 The following contents are mentioned in the article:

Neuroprotective strategies are an unmet medical need for Parkinson′s disease. Fibroblast growth factor 20 (FGF20) enhances survival of cultured dopaminergic neurons but little is known about its in vivo potential. We set out to examine whether manipulation of the FGF20 system affected nigrostriatal tract integrity in rats, to identify which fibroblast growth factor receptors (FGFRs) might reside on dopaminergic neurons and to discover the source of endogenous FGF20 in the substantia nigra (SN). Male Sprague Dawley rats were subject to a partial 6-OHDA lesion alongside treatment with exogenous FGF20 or an FGFR antagonist. Behavioral readouts and tyrosine-hydroxylase (TH) immunohistochem. were used to evaluate nigrostriatal tract integrity. Fluorescent immunohistochem. was used to examine FGFR subtype expression on TH-pos. dopamine neurons and FGF20 cellular localization within the SN. FGF20 (2.5 μg/day) significantly protected TH-pos. cells in the SN and terminals in the striatum, while reducing the development of motor asymmetry at 5, 8 and 11 days post lesion. Conversely, the FGFR antagonist PD173074 (2 mg/kg) significantly worsened both the 6-OHDA lesion and resultant motor asymmetry. Within the SN, TH-pos. cells expressed FGFR1, 3 and 4 while FGF20 co-localized with GFAP-pos. astrocytes. In conclusion, FGF20 protects dopaminergic neurons in vivo, an action likely mediated through activation of FGFRs1, 3 or 4 found on these neurons. Given FGF20 is localized to astrocytes in the adult SN, endogenous FGF20 provides its protection of dopamine neurons through a paracrine action. Boosting the endogenous FGF20 production might offer potential as a future therapeutic strategy in Parkinson′s disease. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7Electric Literature of C28H41N7O3).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives. Pyrimidine derivatives have been used in a wide variety of pharmaceuticals including general anesthetics, anti-epilepsy medication, anti-malaria medication, drugs for treating high blood pressure, and HIV medication.Electric Literature of C28H41N7O3

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia