Henderson, John et al. published their research in Journal of Cellular and Molecular Medicine in 2020 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidines are isomeric with two other forms of diazines: pyridazine, with the nitrogen atoms in the 1 and 2 positions; and pyrazine, with the nitrogen atoms in the 1 and 4 positions. Drugs having the pyrimidine motif have manifested to exhibit gratifying biological activity like anticancer, antiviral, anti-inflammatory, antibacterial, and antihypertensive activities.Application In Synthesis of 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea

Metabolic reprogramming of glycolysis and glutamine metabolism are key events in myofibroblast transition in systemic sclerosis pathogenesis was written by Henderson, John;Duffy, Laura;Stratton, Richard;Ford, Dianne;O’Reilly, Steven. And the article was included in Journal of Cellular and Molecular Medicine in 2020.Application In Synthesis of 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea The following contents are mentioned in the article:

Systemic Sclerosis (SSc) is a rare fibrotic autoimmune disorder for which no curative treatments currently exist. Metabolic remodelling has recently been implicated in other autoimmune diseases; however, its potential role in SSc has received little attention. Here, we aimed to determine whether changes to glycolysis and glutaminolysis are important features of skin fibrosis. TGF-β1, the quintessential pro-fibrotic stimulus, was used to activate fibrotic pathways in NHDFs in vitro. Dermal fibroblasts derived from lesions of SSc patients were also used for in vitro experiments Parameters of glycolytic function were assessed using by measuring extracellular acidification in response to glycolytic activators/inhibitors, while markers of fibrosis were measured by Western blotting following the use of the glycolysis inhibitors 2-dg and 3PO and the glutaminolysis inhibitor G968. Succinate was also measured after TGF-β1 stimulation. Itaconate was added to SSc fibroblasts and collagen examined TGF-β1 up-regulates glycolysis in dermal fibroblasts, and inhibition of glycolysis attenuates its pro-fibrotic effects. Furthermore, inhibition of glutamine metabolism also reverses TGF-β1-induced fibrosis, while glutaminase expression is up-regulated in dermal fibroblasts derived from SSc patient skin lesions, suggesting that enhanced glutamine metabolism is another aspect of the pro-fibrotic metabolic phenotype in skin fibrosis. TGF-β1 was also able to enhance succinate production, with increased succinate shown to be associated with increased collagen expression. Incubation of SSc cells with itaconate, an important metabolite, reduced collagen expression. TGF-β1 activation of glycolysis is a key feature of the fibrotic phenotype induced by TGF-B1 in skin cells, while increased glutaminolysis is also evident in SSc fibroblasts. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7Application In Synthesis of 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidines are isomeric with two other forms of diazines: pyridazine, with the nitrogen atoms in the 1 and 2 positions; and pyrazine, with the nitrogen atoms in the 1 and 4 positions. Drugs having the pyrimidine motif have manifested to exhibit gratifying biological activity like anticancer, antiviral, anti-inflammatory, antibacterial, and antihypertensive activities.Application In Synthesis of 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Kim, Do-Hee et al. published their research in Cancer Biology & Therapy in 2016 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. The aromatic compound pyrimidine, and its derivatives, are ubiquitous in nature. They are found in nucleic acids, vitamins, amino acids, antibiotics, alkaloids, and a variety of toxins. We all know its importance to life – pyrimidine and purine bases are included in the structure of DNA and RNA.Quality Control of 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea

Antitumor effects and molecular mechanisms of ponatinib on endometrial cancer cells harboring activating FGFR2 mutations was written by Kim, Do-Hee;Kwak, Yeonui;Kim, Nam Doo;Sim, Taebo. And the article was included in Cancer Biology & Therapy in 2016.Quality Control of 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea The following contents are mentioned in the article:

Aberrant mutational activation of FGFR2 is associated with endometrial cancers (ECs). AP24534 (ponatinib) currently undergoing clin. trials has been known to be an orally available multi-targeted tyrosine kinase inhibitor. Our biochem. kinase assay showed that AP24534 is potent against wild-type FGFR1-4 and 5 mutant FGFRs (V561M-FGFR1, N549H-FGFR2, K650E-FGFR3, G697C-FGFR3, N535K-FGFR4) and possesses the strongest kinase-inhibitory activity on N549H-FGFR2 (IC50 of 0.5 nM) among all FGFRs tested. We therefore investigated the effects of AP24534 on endometrial cancer cells harboring activating FGFR2 mutations and explored the underlying mol. mechanisms. AP24534 significantly inhibited the proliferation of endometrial cancer cells bearing activating FGFR2 mutations (N549K, K310R/N549K, S252W) and mainly induced G1/S cell cycle arrest leading to apoptosis. AP24534 also diminished the kinase activity of immunoprecipitated FGFR2 derived from MFE-296 and MFE-280 cells and reduced the phosphorylation of FGFR2 and FRS2 on MFE-296 and AN3CA cells. AP24534 caused substantial reductions in ERK phosphorylation, PLCγ signaling and STAT5 signal transduction on ECs bearing FGFR2 activating mutations. Akt signaling pathway was also deactivated by AP24534. AP24534 causes the chemotherapeutic effect through mainly the blockade of ERK, PLCγ and STAT5 signal transduction on ECs. Moreover, AP24534 inhibited migration and invasion of endometrial cancer cells with FGFR2 mutations. In addition, AP24534 significantly blocked anchorage-independent growth of endometrial cancer cells. We, for the first time, report the mol. mechanisms by which AP24534 exerts antitumor effects on ECs with FGFR2 activating mutations, which would provide mechanistic insight into ongoing clin. investigations of AP24534 for ECs. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7Quality Control of 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. The aromatic compound pyrimidine, and its derivatives, are ubiquitous in nature. They are found in nucleic acids, vitamins, amino acids, antibiotics, alkaloids, and a variety of toxins. We all know its importance to life – pyrimidine and purine bases are included in the structure of DNA and RNA.Quality Control of 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Miyake, Makito et al. published their research in Journal of Pharmacology and Experimental Therapeutics in 2010 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Heterocyclic compounds bearing the pyrimidine core are of tremendous interest as they constitute an important class of natural and synthetic compounds exhibiting diverse useful biological activities that hold attractive potential for clinical translation as therapeutic agents in alleviation of a myriad of diseases. As nucleotides in DNA and RNA, pyrimidine nucleotide derivatives have a wide range of biological applications. For example, pyrimidine derivatives are useful in DNA repair studies involving cancer and epigenetics.Computed Properties of C28H41N7O3

1-tert-butyl-3-[6-(3,5-dimethoxy-phenyl)-2-(4-diethylamino-butylamino)-pyrido[2,3-d]pyrimidin-7-yl]-urea (PD173074), a selective tyrosine kinase inhibitor of fibroblast growth factor receptor-3 (FGFR3), inhibits cell proliferation of bladder cancer carrying the FGFR3 gene mutation along with up-regulation of p27/Kip1 and G1/G0 arrest was written by Miyake, Makito;Ishii, Masazumi;Koyama, Naoki;Kawashima, Kiyotaka;Kodama, Tetsuro;Anai, Satoshi;Fujimoto, Kiyohide;Hirao, Yoshihiko;Sugano, Kokichi. And the article was included in Journal of Pharmacology and Experimental Therapeutics in 2010.Computed Properties of C28H41N7O3 The following contents are mentioned in the article:

Activating mutation of the fibroblast growth factor receptor-3 (FGFR3) gene is known as a key mol. event in both oncogenesis and cell proliferation of low-grade noninvasive human bladder urothelial carcinoma (UC), which is characterized by frequent intravesical recurrence. In this study, we investigated the antitumor potentiality of 1-tert-butyl-3-[6-(3,5-dimethoxy-phenyl)-2-(4-diethylamino-butylamino)-pyrido[2,3-d]pyrimidin-7-yl]-urea (PD173074), a small-mol. FGFR3-selective tyrosine kinase inhibitor (TKI), as a therapeutic modality using eight UC cell lines. In our in vitro cell proliferation assay, PD173074 suppressed cell proliferation remarkably in two cell lines, namely, UM-UC-14 and MGHU3, which expressed mutated FGFR3 protein. In contrast, the other six cell lines expressing wild-type FGFR3 or without FGFR3 expression were resistant to PD173074 treatment. Cell cycle anal. revealed the growth inhibitory effect of PD173074 was associated with arrest at G1-S transition in a dose-depending manner. Furthermore, we observed an inverse relationship between Ki-67 and p27/Kip1 expression after PD173074 treatment, suggesting that up-regulation of p27 recruited UC cells harboring activating FGFR3 mutations in G1 that was analogous with the other receptor TKIs acting on the epidermal growth factor receptors. In the mouse xenograft models using s.c. transplanted UM-UC-14 and MGHU3, orally administered PD173074 suppressed tumor growth and induced apoptotic changes comparable with the results of our in vitro assay. These findings elucidated the effectiveness of mol. targeted approach for bladder UC harboring FGFR3 mutations and the potential utility to decrease the intravesical recurrence of nonmuscle invasive bladder UC after transurethral surgical resection. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7Computed Properties of C28H41N7O3).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Heterocyclic compounds bearing the pyrimidine core are of tremendous interest as they constitute an important class of natural and synthetic compounds exhibiting diverse useful biological activities that hold attractive potential for clinical translation as therapeutic agents in alleviation of a myriad of diseases. As nucleotides in DNA and RNA, pyrimidine nucleotide derivatives have a wide range of biological applications. For example, pyrimidine derivatives are useful in DNA repair studies involving cancer and epigenetics.Computed Properties of C28H41N7O3

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Jonas, Oliver et al. published their research in Clinical Cancer Research in 2016 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidines are isomeric with two other forms of diazines: pyridazine, with the nitrogen atoms in the 1 and 2 positions; and pyrazine, with the nitrogen atoms in the 1 and 4 positions. A Cu-catalyzed and 4-HO-TEMPO-mediated [3 + 3] annulation of commercially available amidines with saturated ketones enables an efficient and facile synthesis of structurally important pyrimidines via a cascade reaction of oxidative dehydrogenation/annulation/oxidative aromatization.Synthetic Route of C28H41N7O3

Parallel In Vivo Assessment of Drug Phenotypes at Various Time Points during Systemic BRAF Inhibition Reveals Tumor Adaptation and Altered Treatment Vulnerabilities was written by Jonas, Oliver;Oudin, Madeleine J.;Kosciuk, Tatsiana;Whitman, Matthew;Gertler, Frank B.;Cima, Michael J.;Flaherty, Keith T.;Langer, Robert. And the article was included in Clinical Cancer Research in 2016.Synthetic Route of C28H41N7O3 The following contents are mentioned in the article:

Treatment of BRAF-mutated melanoma tumors with BRAF inhibitor-based therapy produces high response rates, but of limited duration in the vast majority of patients. Published investigations of resistance mechanisms suggest numerous examples of tumor adaptation and signal transduction bypass mechanisms, but without insight into biomarkers that would predict which mechanism will predominate. Monitoring phenotypic response of multiple adaptive mechanisms simultaneously within the same tumor as it adapts during treatment has been elusive. This study reports on a method to provide a more complete understanding of adaptive tumor responses. We simultaneously measured in vivo antitumor activity of 12 classes of inhibitors, which are suspected of enabling adaptive escape mechanisms, at various time points during systemic BRAF inhibition. We used implantable microdevices to release multiple compounds into distinct regions of a tumor to measure the efficacy of each compound independently and repeated these measurements as tumors progressed on systemic BRAF treatment. We observed varying phenotypic responses to specific inhibitors before, during, and after prolonged systemic treatment with BRAF inhibitors. Our results specifically identify PI3K, PDGFR, EGFR, and HDAC inhibitors as becoming significantly more efficacious during systemic BRAF inhibition. The sensitivity to other targeted inhibitors remained mostly unchanged, whereas local incremental sensitivity to PLX4720 declined sharply. These findings suggest redundancy of several resistance mechanisms and may help identify optimal constituents of more effective combination therapy in BRAF-mutant melanoma. They also represent a new paradigm for dynamic measurement of adaptive signaling mechanisms within the same tumor during therapy. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7Synthetic Route of C28H41N7O3).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidines are isomeric with two other forms of diazines: pyridazine, with the nitrogen atoms in the 1 and 2 positions; and pyrazine, with the nitrogen atoms in the 1 and 4 positions. A Cu-catalyzed and 4-HO-TEMPO-mediated [3 + 3] annulation of commercially available amidines with saturated ketones enables an efficient and facile synthesis of structurally important pyrimidines via a cascade reaction of oxidative dehydrogenation/annulation/oxidative aromatization.Synthetic Route of C28H41N7O3

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Liang, Sheng-Ben et al. published their research in Clinical Cancer Research in 2011 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. Therapy for fungal infections is based mainly on four classes of antifungals: azoles, echinocandins, polyenes, and pyrimidine analogs.Computed Properties of C28H41N7O3

Molecular Target Characterization and Antimyeloma Activity of the Novel, Insulin-like Growth Factor 1 Receptor Inhibitor, GTx-134 was written by Liang, Sheng-Ben;Yang, Xiu-Zhi;Trieu, Young;Li, Zhihua;Zive, Jessica;Leung-Hagesteijn, Chungyee;Wei, Ellen;Zozulya, Sergey;Coss, Christopher C.;Dalton, James T.;Fantus, Ivan George;Trudel, Suzanne. And the article was included in Clinical Cancer Research in 2011.Computed Properties of C28H41N7O3 The following contents are mentioned in the article:

PURPOSE: Therapeutic strategies that target insulin-like growth factor 1 receptor (IGF-1R) hold promise in a wide variety of cancers including multiple myeloma (MM). In this study, we describe GTx-134, a novel small-mol. inhibitor of IGF-1R and insulin receptor (IR) and characterized its antitumor activity in preclin. models of MM. Exptl. Design: The activity of GTx-134 as a single agent and in combination was tested in MM cell lines and primary patient samples. Downstream effector proteins and correlation with apoptosis was evaluated. Cytotoxcity in bone marrow stroma coculture experiments was assessed. Finally, the in vivo efficacy was evaluated in a human myeloma xenograft model. RESULTS: GTx-134 inhibited the growth of 10 of 14 myeloma cell lines (<5 μmol/L) and induced apoptosis. Sensitivity to GTx-134 correlated with IGF-1R signal inhibition. Expression of MDR-1 and CD45 were associated with resistance to GTx-134. Coculture with insulin-growth factor-1 (IGF-1) or adherence to bone marrow stroma conferred modest resistance, but did not overcome GTx-134-induced cytotoxicity. GTx-134 showed in vitro synergies when combined with dexamethasone or lenalidomide. Further, GTx-134 enhanced the activity of PD173074, a fibroblast growth factor receptor 3 (FGFR3) inhibitor, against t(4;14) myeloma cells. Therapeutic efficacy of GTx-134 was shown against primary cells and xenograft tumors. Although dysregulation of glucose homeostasis was observed in GTx-134-treated mice, impairment of glucose tolerance was modest. CONCLUSIONS: These studies support the potential therapeutic efficacy of GTx-134 in MM. Further, they provide a rationale for clin. application in combination with established antimyeloma treatments and novel targeted therapies. Clin Cancer Res; 17(14); 4693-704. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7Computed Properties of C28H41N7O3).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. Therapy for fungal infections is based mainly on four classes of antifungals: azoles, echinocandins, polyenes, and pyrimidine analogs.Computed Properties of C28H41N7O3

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Larrieu-Lahargue, Frederic et al. published their research in PLoS One in 2012 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. The aromatic compound pyrimidine, and its derivatives, are ubiquitous in nature. They are found in nucleic acids, vitamins, amino acids, antibiotics, alkaloids, and a variety of toxins. For example, the neurotoxin tetrodotoxin is a pyrimidine derivative. It is found in a number of species including the Japanese puffer fish, the blue-ringed octopus, and the orange-bellied newt. Tetrodotoxin prevents the transmission of nerve signals and can result in paralysis and death.Product Details of 219580-11-7

Blocking Fibroblast Growth Factor receptor signaling inhibits tumor growth, lymphangiogenesis, and metastasis was written by Larrieu-Lahargue, Frederic;Welm, Alana L.;Bouchecareilh, Marion;Alitalo, Kari;Li, Dean Y.;Bikfalvi, Andreas;Auguste, Patrick. And the article was included in PLoS One in 2012.Product Details of 219580-11-7 The following contents are mentioned in the article:

Fibroblast Growth Factor receptor (FGFR) activity plays crucial roles in tumor growth and patient survival. However, FGF (Fibroblast Growth Factor) signaling as a target for cancer therapy has been under-investigated compared to other receptor tyrosine kinases. Here, we studied the effect of FGFR signaling inhibition on tumor growth, metastasis and lymphangiogenesis by expressing a dominant neg. FGFR (FGFR-2DN) in an orthotopic mouse mammary 66c14 carcinoma model. We show that FGFR-2DN-expressing 66c14 cells proliferate in vitro slower than controls. 66C14 tumor outgrowth and lung metastatic foci are reduced in mice implanted with FGFR-2DN-expressing cells, which also exhibited better overall survival. We found 66c14 cells in the lumen of tumor lymphatic vessels and in lymph nodes. FGFR-2DN-expressing tumors exhibited a decrease in VEGFR-3 (Vascular Endothelial Growth Factor Receptor-3) or podoplanin-pos. lymphatic vessels, an increase in isolated intratumoral lymphatic endothelial cells and a reduction in VEGF-C (Vascular Endothelial Growth Factor-C) mRNA expression. FGFs may act in an autocrine manner as the inhibition of FGFR signaling in tumor cells suppresses VEGF-C expression in a COX-2 (cyclooxygenase-2) or HIF1-α (hypoxia-inducible factor-1 α) independent manner. FGFs may also act in a paracrine manner on tumor lymphatics by inducing expression of pro-lymphangiogenic mols. such as VEGFR-3, integrin α9, prox1 and netrin-1. Finally, in vitro lymphangiogenesis is impeded in the presence of FGFR-2DN 66c14 cells. These data confirm that both FGF and VEGF signaling are necessary for the maintenance of vascular morphogenesis and provide evidence that targeting FGFR signaling may be an interesting approach to inhibit tumor lymphangiogenesis and metastatic spread. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7Product Details of 219580-11-7).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. The aromatic compound pyrimidine, and its derivatives, are ubiquitous in nature. They are found in nucleic acids, vitamins, amino acids, antibiotics, alkaloids, and a variety of toxins. For example, the neurotoxin tetrodotoxin is a pyrimidine derivative. It is found in a number of species including the Japanese puffer fish, the blue-ringed octopus, and the orange-bellied newt. Tetrodotoxin prevents the transmission of nerve signals and can result in paralysis and death.Product Details of 219580-11-7

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Kim, Junghoon et al. published their research in FEBS Journal in 2019 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidine also found in many synthetic compounds such as barbiturates and the HIV drug, zidovudine. Pyrimidine derivatives have been used in a wide variety of pharmaceuticals including general anesthetics, anti-epilepsy medication, anti-malaria medication, drugs for treating high blood pressure, and HIV medication.Safety of 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea

Critical role of the fibroblast growth factor signalling pathway in Ewing’s sarcoma octamer-binding transcription factor 4-mediated cell proliferation and tumorigenesis was written by Kim, Junghoon;Kim, Hyo Sun;Shim, Jung-Jae;Lee, Jungwoon;Kim, Ah-young;Kim, Jungho. And the article was included in FEBS Journal in 2019.Safety of 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea The following contents are mentioned in the article:

Certain bone and soft tissue (BST) tumors harbor a chromosomal translocation [t(6;22)(p21;q12)], which fuses the Ewing’s sarcoma (EWS) gene at 22q12 with the octamer-binding transcription factor 4 (Oct-4) gene at 6p21, resulting in the chimeric EWS-Oct-4 protein that possesses high transactivation ability. Although abnormal activation of signalling pathways can lead to human cancer development, the pathways underlying these processes in human BST tumors remain poorly explored. Here, we investigated the functional significance of fibroblast growth factor (FGF) signalling in human BST tumors. To identify the gene(s) involved in the FGF signalling pathway and potentially regulated by EWS-Oct-4 (also called EWS-POU5F1), we performed RNA-Seq anal., electrophoretic mobility shift assays, chromatin immunoprecipitation assays, and xenograft assays. Treating GBS6 or ZHBTc4 cells-expressing EWS-Oct-4 with the small mol. FGF receptor (FGFR) inhibitors PD173074, NVPBGJ398, ponatinib, and dovitinib suppressed cellular proliferation. Gene expression anal. revealed that, among 22 Fgf and four Fgfr family members, Fgf-4 showed the highest upregulation (by 145-fold) in ZHBTc4 cells-expressing EWS-Oct-4. Computer-assisted anal. identified a putative EWS-Oct-4-binding site at +3017/+3024, suggesting that EWS-Oct-4 regulates Fgf-4 expression in human BST tumors. Fgf-4 enhancer constructs showed that EWS-Oct-4 transactivated the Fgf-4 gene reporter in vitro, and that overexpression of EWS-Oct-4 stimulated endogenous Fgf-4 gene expression in vivo. Finally, PD173074 significantly decreased tumor volume in mice. Taken together, these data suggest that FGF-4 signalling is involved in EWS-Oct-4-mediated tumorigenesis, and that its inhibition impairs tumor growth in vivo significantly. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7Safety of 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidine also found in many synthetic compounds such as barbiturates and the HIV drug, zidovudine. Pyrimidine derivatives have been used in a wide variety of pharmaceuticals including general anesthetics, anti-epilepsy medication, anti-malaria medication, drugs for treating high blood pressure, and HIV medication.Safety of 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Stachowiak, E. K. et al. published their research in Translational Psychiatry in 2017 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. The pyrimidine nitrogenous bases are derived from the organic compound pyrimidine through the addition of various functional groups. A Cu-catalyzed and 4-HO-TEMPO-mediated [3 + 3] annulation of commercially available amidines with saturated ketones enables an efficient and facile synthesis of structurally important pyrimidines via a cascade reaction of oxidative dehydrogenation/annulation/oxidative aromatization.COA of Formula: C28H41N7O3

Cerebral organoids reveal early cortical maldevelopment in schizophrenia-computational anatomy and genomics, role of FGFR1 was written by Stachowiak, E. K.;Benson, C. A.;Narla, S. T.;Dimitri, A.;Chuye, L. E. Bayona;Dhiman, S.;Harikrishnan, K.;Elahi, S.;Freedman, D.;Brennand, K. J.;Sarder, P.;Stachowiak, M. K.. And the article was included in Translational Psychiatry in 2017.COA of Formula: C28H41N7O3 The following contents are mentioned in the article:

Studies of induced pluripotent stem cells (iPSCs) from schizophrenia patients and control individuals revealed that the disorder is programmed at the preneuronal stage, involves a common dysregulated mRNA transcriptome, and identified Integrative Nuclear FGFR1 Signaling a common dysregulated mechanism. We used human embryonic stem cell (hESC) and iPSC-derived cerebral organoids from four controls and three schizophrenia patients to model the first trimester of in utero brain development. The schizophrenia organoids revealed an abnormal scattering of proliferating Ki67+ neural progenitor cells (NPCs) from the ventricular zone (VZ), throughout the intermediate (IZ) and cortical (CZ) zones. TBR1 pioneer neurons and reelin, which guides cortico-petal migration, were restricted from the schizophrenia cortex. The maturing neurons were abundantly developed in the subcortical regions, but were depleted from the schizophrenia cortex. The decreased intracortical connectivity was denoted by changes in the orientation and morphol. of calretinin interneurons. In schizophrenia organoids, nuclear (n)FGFR1 was abundantly expressed by developing subcortical cells, but was depleted from the neuronal committed cells (NCCs) of the CZ. Transfection of dominant neg. and constitutively active nFGFR1 caused widespread disruption of the neuro-ontogenic gene networks in hESC-derived NPCs and NCCs. The fgfr1 gene was the most prominent FGFR gene expressed in NPCs and NCCs, and blocking with PD173074 reproduced both the loss of nFGFR1 and cortical neuronal maturation in hESC cerebral organoids. We report for the first time, progression of the cortical malformation in schizophrenia and link it to altered FGFR1 signaling. Targeting INFS may offer a preventive treatment of schizophrenia. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7COA of Formula: C28H41N7O3).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. The pyrimidine nitrogenous bases are derived from the organic compound pyrimidine through the addition of various functional groups. A Cu-catalyzed and 4-HO-TEMPO-mediated [3 + 3] annulation of commercially available amidines with saturated ketones enables an efficient and facile synthesis of structurally important pyrimidines via a cascade reaction of oxidative dehydrogenation/annulation/oxidative aromatization.COA of Formula: C28H41N7O3

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Paterson, Anna L. et al. published their research in Gut in 2013 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. As nucleotides in DNA and RNA, pyrimidine nucleotide derivatives have a wide range of biological applications. For example, pyrimidine derivatives are useful in DNA repair studies involving cancer and epigenetics.Application of 219580-11-7

A systematic approach to therapeutic target selection in oesophago-gastric cancer was written by Paterson, Anna L.;Shannon, Nicholas B.;Lao-Sirieix, Pierre;Ong, Chin-Ann J.;Peters, Christopher J.;O’Donovan, Maria;Fitzgerald, Rebecca C.. And the article was included in Gut in 2013.Application of 219580-11-7 The following contents are mentioned in the article:

Objective The success of personalised therapy depends on identification and inhibition of the oncogene(s) on which that tumor is dependent. We aimed to determine whether a receptor tyrosine kinase (RTK) array could be used to select the most effective therapeutic strategies in molecularly heterogeneous oesophago-gastric adenocarcinomas. Design Gene expression profiling from oesophagogastric tumors (n = 75) and preinvasive stages (n = 57) identified the active signalling pathways, which was confirmed using immunohistochem. (n = 434). RTK arrays on a cell line panel (n = 14) determined therapeutic targets for in vitro cytotoxic testing. Feasibility of this personalised approach was tested in tumor samples (n = 46). Results MAPK was the most frequently activated pathway (32/75 samples (42.7%)) with progressive enrichment in preinvasive disease stages (p<0.05) and ERK phosphorylation in 148/434 (34.3%) independent samples. Cell lines displayed a range of RTK activation profiles. When no RTKs were activated, tyrosine kinase inhibitors (TKIs) and a Mek inhibitor were not useful (MKN1). In lines with a dominant phosphorylated RTK (OE19, MKN45 and KATOIII), selection of this TKI or Mek in nM concentrations induced cytotoxicity and inhibited Erk and Akt phosphorylation. In cells lines with complex activation profiles (HSC39 and OE33), a combination of TKIs or Mek inhibition (in nM concentrations) was necessary for cytotoxicity and inhibition of Erk and Akt phosphorylation. Human tumors demonstrated diverse activation profiles and 65% of cases had two or more active RTKs. Conclusions The MAPK pathway is commonly activated in oesophago-gastric cancer following activation of a variety of RTKs. Mol. phenotyping can inform a rational choice of targeted therapy. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7Application of 219580-11-7).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. As nucleotides in DNA and RNA, pyrimidine nucleotide derivatives have a wide range of biological applications. For example, pyrimidine derivatives are useful in DNA repair studies involving cancer and epigenetics.Application of 219580-11-7

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Lang, Jessica D. et al. published their research in Clinical Cancer Research in 2018 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives. Therapy for fungal infections is based mainly on four classes of antifungals: azoles, echinocandins, polyenes, and pyrimidine analogs.Category: pyrimidines

Ponatinib Shows Potent Antitumor Activity in Small Cell Carcinoma of the Ovary Hypercalcemic Type (SCCOHT) through Multikinase Inhibition was written by Lang, Jessica D.;Hendricks, William P. D.;Orlando, Krystal A.;Yin, Hongwei;Kiefer, Jeffrey;Ramos, Pilar;Sharma, Ritin;Pirrotte, Patrick;Raupach, Elizabeth A.;Sereduk, Chris;Tang, Nanyun;Liang, Winnie S.;Washington, Megan;Facista, Salvatore J.;Zismann, Victoria L.;Cousins, Emily M.;Major, Michael B.;Wang, Yemin;Karnezis, Anthony N.;Sekulic, Aleksandar;Hass, Ralf;Vanderhyden, Barbara C.;Nair, Praveen;Weissman, Bernard E.;Huntsman, David G.;Trent, Jeffrey M.. And the article was included in Clinical Cancer Research in 2018.Category: pyrimidines The following contents are mentioned in the article:

Purpose: Small cell carcinoma of the ovary, hypercalcemic type (SCCOHT) is a rare, aggressive ovarian cancer in young women that is universally driven by loss of the SWI/SNF ATPase subunits SMARCA4 and SMARCA2. A great need exists for effective targeted therapies for SCCOHT. Exptl. Design: To identify underlying therapeutic vulnerabilities in SCCOHT, we conducted high-throughput siRNA and drug screens. Complementary proteomics approaches profiled kinases inhibited by ponatinib. Ponatinib was tested for efficacy in two patient-derived xenograft (PDX) models and one cell-line xenograft model of SCCOHT. Results: The receptor tyrosine kinase (RTK) family was enriched in siRNA screen hits, with FGFRs and PDGFRs being overlapping hits between drug and siRNA screens. Of multiple potent drug classes in SCCOHT cell lines, RTK inhibitors were only one of two classes with selectivity in SCCOHT relative to three SWI/SNF wild-type ovarian cancer cell lines. We further identified ponatinib as the most effective clin. approved RTK inhibitor. Reexpression of SMARCA4 was shown to confer a 1.7-fold increase in resistance to ponatinib. Subsequent proteomic assessment of ponatinib target modulation in SCCOHT cell models confirmed inhibition of nine known ponatinib target kinases alongside 77 noncanonical ponatinib targets in SCCOHT. Finally, ponatinib delayed tumor doubling time 4-fold in SCCOHT-1 xenografts while reducing final tumor volumes in SCCOHT PDX models by 58.6% and 42.5%. Conclusions: Ponatinib is an effective agent for SMARCA4-mutant SCCOHT in both in vitro and in vivo preclin. models through its inhibition of multiple kinases. Clin. investigation of this FDA-approved oncol. drug in SCCOHT is warranted. Clin Cancer Res; 24(8); 1932-43. ©2018 AACR. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7Category: pyrimidines).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives. Therapy for fungal infections is based mainly on four classes of antifungals: azoles, echinocandins, polyenes, and pyrimidine analogs.Category: pyrimidines

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia