Tan, Yi-Min team published research in Bioorganic & Medicinal Chemistry Letters in 2022 | 1722-12-9

Electric Literature of 1722-12-9, 2-Chloropyrimidine is a monochlorinated pyrimidine with plant growth regulating activity. Chloropyrimidine is a useful reagent in the preparation of antivirals and other biologically active compounds.
2-Chloropyrimidine undergoes cobalt-catalyzed cross-coupling reaction with aryl halides.
2-Chloropyrimidine is a molecule that can be synthesized by the oxidation of pyrimidine with hydrogen peroxide and hydrochloric acid. The reaction proceeds through an electrochemical process in which the oxidation catalyst is a platinum electrode. This reaction is catalyzed by the nucleophilic attack of malonic acid on the chloropyrimidine at the methylene group. This efficient method for making 2-chloropyrimidine has been applied to synthesize aryl halides, including phenyl chloropyrimidine and pyridyl chloropyrimidine, from their corresponding chloride and bromide precursors. The fluorescence properties of 2-chloropyrimidine have been studied in coordination chemistry, where it forms complexes with metal ions such as Mn2+. In this study, it was found that adsorption mechanisms are dependent on molecular size, charge density, kinetic energy, and adsorbent surface area., 1722-12-9.

The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives, including the nucleotides cytosine, thymine and uracil, thiamine (vitamin B1) and alloxan. 1722-12-9, formula is C4H3ClN2, Name is 2-Chloropyrimidine. It is also found in many synthetic compounds such as barbiturates and the HIV drug, zidovudine. Electric Literature of 1722-12-9.

Tan, Yi-Min;Li, Di;Li, Fen-Fen;Fawad Ansari, Mohammad;Fang, Bo;Zhou, Cheng-He research published 《 Pyrimidine-conjugated fluoroquinolones as new potential broad-spectrum antibacterial agents》, the research content is summarized as follows. Pyrimidine-conjugated fluoroquinolones were constructed to cope with the dreadful resistance. Most of the target pyrimidine derivatives effectively suppressed the growth of the tested strains, especially, 4-aminopyrimidinyl compound 1c showed a broad antibacterial spectrum and low cytotoxicity and exhibited superior antibacterial potency against Enterococcus faecalis with a low MIC of 0.25 μg/mL to norfloxacin and ciprofloxacin. The active compound 1c with fast bactericidal potency could inhibit the formation of biofilms and showed much lower trend for the development of drug-resistance than norfloxacin and ciprofloxacin. Further exploration revealed that compound 1c could prompt ROS accumulations in bacterial cells and interact with DNA to form a DNA-1c complex, thus facilitating bacterial death. ADME anal. indicated that compound 1c possessed favorable drug-likeness and promising pharmacokinetic properties. These results demonstrated that pyrimidine-conjugated fluoroquinolones held hope as potential antibacterial candidates and deserve further study.

Electric Literature of 1722-12-9, 2-Chloropyrimidine is a monochlorinated pyrimidine with plant growth regulating activity. Chloropyrimidine is a useful reagent in the preparation of antivirals and other biologically active compounds.
2-Chloropyrimidine undergoes cobalt-catalyzed cross-coupling reaction with aryl halides.
2-Chloropyrimidine is a molecule that can be synthesized by the oxidation of pyrimidine with hydrogen peroxide and hydrochloric acid. The reaction proceeds through an electrochemical process in which the oxidation catalyst is a platinum electrode. This reaction is catalyzed by the nucleophilic attack of malonic acid on the chloropyrimidine at the methylene group. This efficient method for making 2-chloropyrimidine has been applied to synthesize aryl halides, including phenyl chloropyrimidine and pyridyl chloropyrimidine, from their corresponding chloride and bromide precursors. The fluorescence properties of 2-chloropyrimidine have been studied in coordination chemistry, where it forms complexes with metal ions such as Mn2+. In this study, it was found that adsorption mechanisms are dependent on molecular size, charge density, kinetic energy, and adsorbent surface area., 1722-12-9.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia