The important role of 148-51-6

As far as I know, this compound(148-51-6)Application In Synthesis of 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Application In Synthesis of 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride. The mechanism of aromatic electrophilic substitution of aromatic heterocycles is consistent with that of benzene. Compound: 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride, is researched, Molecular C8H12ClNO2, CAS is 148-51-6, about Transmitter synthesis and convulsant drugs: effects of pyridoxal phosphate antagonists and allylglycine. Author is Sawaya, Christina; Horton, Roger; Meldrum, Brian.

Glutamic acid decarboxylase (EC 4.1.1.15) (I) [9024-58-2] and dopa decarboxylase (EC 4.1.1.26) (II) [9042-64-2] in mouse brain homogenates were inhibited after administration of methyldithiocarbazinate [5397-03-5] (45 mg/kg, i.p.), thiosemicarbazide [79-19-6] (100 mg/kg, i.p.), or 4-deoxypyridoxine-HCl (III) [148-51-6] (250 mg/kg, i.p.); addition of pyridoxal phosphate [54-47-7] abolished the inhibition. I activity was inhibited by allylglycine (IV) [3182-77-2] in vivo (200 mg/kg, i.p.) and in vitro whereas II activity was unaffected. III (250 mg/kg, i.p.) decreased brain GABA [56-12-2] levels, increased homovanillic acid [306-08-1] and 5-hydroxyindoleacetic acid [54-16-0] levels, and did not alter dopamine [51-61-6] and serotonin [50-67-9] levels. Brain GABA levels were decreased by IV while monoamine and monoamine metabolite levels were unchanged. Inhibition of II activity is not the primary or critical mechanism in the convulsant action of hydrazides and IV.

As far as I know, this compound(148-51-6)Application In Synthesis of 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia