The important role of 2-Chloro-5-methylpyrimidine

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,22536-61-4, its application will become more common.

Adding a certain compound to certain chemical reactions, such as: 22536-61-4, 2-Chloro-5-methylpyrimidine, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound, 22536-61-4, blongs to pyrimidines compound. SDS of cas: 22536-61-4

2-Chloro-5-methyl-pyrimidine (18 mL, 151 mmol), potassium (Z)-but-2-en-2- yltrifluoroborate (commercially available from Sigma Aldrich, 31 g, 191 mmol), tricyclohexylphosphine (8.5 g, 30.2 mmol) and Pd2(dba)3 (13.82 g, 15.09 mmol) were added to a flask, which was then degassed and backfilled with nitrogen. To the flask was added 1,4-dioxane (252 mL) and aqueous potassium phosphate tribasic (37.5 mL, 453 mmol). The resulting reaction was heated at 100 C for 16 h. The reaction was then cooled to RT. The residue was filtered through a plug of silica gel and then loaded onto silica gel (0-20% EtOAc in heptanes) to afford (E)-2-(but-2-en-2-yl)-5-methylpyrimidine 27.01 (19 g, 125 mmol, 83% yield).

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,22536-61-4, its application will become more common.

Reference:
Patent; AMGEN INC.; CHEN, Yinhong; CHENG, Alan C.; DEBENEDETTO, Mikkel V.; DRANSFIELD, Paul John; HARVEY, James S.; HOUZE, Jonathan; KHAKOO, Aarif Yusuf; LAI, Su-Jen; MA, Zhihua; PATTAROPONG, Vatee; SWAMINATH, Gayathri; KREIMAN, Charles; MOEBIUS, David C.; SHARMA, Ankit; (543 pag.)WO2018/93580; (2018); A1;,
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia