Tong, Liangliang team published research in International Journal of Hydrogen Energy in 2022 | 1722-12-9

Product Details of C4H3ClN2, 2-Chloropyrimidine is a monochlorinated pyrimidine with plant growth regulating activity. Chloropyrimidine is a useful reagent in the preparation of antivirals and other biologically active compounds.
2-Chloropyrimidine undergoes cobalt-catalyzed cross-coupling reaction with aryl halides.
2-Chloropyrimidine is a molecule that can be synthesized by the oxidation of pyrimidine with hydrogen peroxide and hydrochloric acid. The reaction proceeds through an electrochemical process in which the oxidation catalyst is a platinum electrode. This reaction is catalyzed by the nucleophilic attack of malonic acid on the chloropyrimidine at the methylene group. This efficient method for making 2-chloropyrimidine has been applied to synthesize aryl halides, including phenyl chloropyrimidine and pyridyl chloropyrimidine, from their corresponding chloride and bromide precursors. The fluorescence properties of 2-chloropyrimidine have been studied in coordination chemistry, where it forms complexes with metal ions such as Mn2+. In this study, it was found that adsorption mechanisms are dependent on molecular size, charge density, kinetic energy, and adsorbent surface area., 1722-12-9.

The nomenclature of pyrimidines is straightforward. However, like other heterocyclics, tautomeric hydroxyl groups yield complications since they exist primarily in the cyclic amide form. 1722-12-9, formula is C4H3ClN2, Name is 2-Chloropyrimidine. For example, 2-hydroxypyrimidine is more properly named 2-pyrimidone. A partial list of trivial names of various pyrimidines exists. Product Details of C4H3ClN2.

Tong, Liangliang;Song, Xinluo;Jiang, Yuxin;Zhao, Bangyao;Li, Yafeng research published 《 Efficiently catalytic transfer hydrogenation of aryl and heteroaryl halides by ultrafine palladium nanoparticles confined into UiO-66》, the research content is summarized as follows. The hydrodehalogenation of aryl and heteroaryl halides (AHHs) is very crucial for academic and industrial applications. Herein, ultrafine palladium nanoparticles (Pd NPs) with the size distribution about 1.77 ± 0.35 nm, were in-situ synthesized and confined into the metal-organic framework of UiO-66 (named as Pd@UiO-66) by impregnation reduction method without tedious post-reducing step. Pd@UiO-66 shows excellent activity with a high conversion (>90%) efficiency in the catalytic transfer hydrogenation (CTH) of AHHs under mild water systems utilizing ammonium formate as hydrogen donor. Furthermore, Pd@UiO-66 maintains highly excellent stability (conversion >95%) after 5 times reused cycles without losing catalytic activity and leaching Pd nanoparticles. This study supplies a new method for hybrid catalysts by immobilizing ultrafine Pd nanoparticles into crystalline MOFs, displaying efficient transform performance for halogen compounds by catalytic hydrogenation.

Product Details of C4H3ClN2, 2-Chloropyrimidine is a monochlorinated pyrimidine with plant growth regulating activity. Chloropyrimidine is a useful reagent in the preparation of antivirals and other biologically active compounds.
2-Chloropyrimidine undergoes cobalt-catalyzed cross-coupling reaction with aryl halides.
2-Chloropyrimidine is a molecule that can be synthesized by the oxidation of pyrimidine with hydrogen peroxide and hydrochloric acid. The reaction proceeds through an electrochemical process in which the oxidation catalyst is a platinum electrode. This reaction is catalyzed by the nucleophilic attack of malonic acid on the chloropyrimidine at the methylene group. This efficient method for making 2-chloropyrimidine has been applied to synthesize aryl halides, including phenyl chloropyrimidine and pyridyl chloropyrimidine, from their corresponding chloride and bromide precursors. The fluorescence properties of 2-chloropyrimidine have been studied in coordination chemistry, where it forms complexes with metal ions such as Mn2+. In this study, it was found that adsorption mechanisms are dependent on molecular size, charge density, kinetic energy, and adsorbent surface area., 1722-12-9.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia