Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. One of the three diazines (six-membered heterocyclics with two nitrogen atoms in the ring), it has the nitrogen atoms at positions 1 and 3 in the ring. 1722-12-9, formula is C4H3ClN2, Name is 2-Chloropyrimidine. The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives, including the nucleotides cytosine, thymine and uracil, thiamine (vitamin B1) and alloxan. Name: 2-Chloropyrimidine.
Townley, Chloe;McMurray, Lindsay;Marsden, Stephen P.;Nelson, Adam research published 《 A unified “top-down” approach for the synthesis of diverse lead-like molecular scaffolds》, the research content is summarized as follows. A “top-down” synthetic approach enabled the step-efficient synthesis of 21 diverse novel mol. scaffolds. The scaffolds were derived from four complex intermediates that had been prepared using cycloaddition chem. Scaffold-hopping of these intermediates was achieved through attachment of an addnl. ring, ring cleavage, ring expansion and/or ring fusion. It was shown that the resulting scaffolds could be decorated to yield diverse lead-like screening compounds
Name: 2-Chloropyrimidine, 2-Chloropyrimidine is a monochlorinated pyrimidine with plant growth regulating activity. Chloropyrimidine is a useful reagent in the preparation of antivirals and other biologically active compounds.
2-Chloropyrimidine undergoes cobalt-catalyzed cross-coupling reaction with aryl halides.
2-Chloropyrimidine is a molecule that can be synthesized by the oxidation of pyrimidine with hydrogen peroxide and hydrochloric acid. The reaction proceeds through an electrochemical process in which the oxidation catalyst is a platinum electrode. This reaction is catalyzed by the nucleophilic attack of malonic acid on the chloropyrimidine at the methylene group. This efficient method for making 2-chloropyrimidine has been applied to synthesize aryl halides, including phenyl chloropyrimidine and pyridyl chloropyrimidine, from their corresponding chloride and bromide precursors. The fluorescence properties of 2-chloropyrimidine have been studied in coordination chemistry, where it forms complexes with metal ions such as Mn2+. In this study, it was found that adsorption mechanisms are dependent on molecular size, charge density, kinetic energy, and adsorbent surface area., 1722-12-9.
Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia