Ullah, Imran et al. published their research in ACS Infectious Diseases in 2020 | CAS: 39083-15-3

5-Ethyl-6-methyl-2-thioxo-2,3-dihydropyrimidin-4(1H)-one (cas: 39083-15-3) belongs to pyrimidine derivatives. Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. Pyrimidine derivatives have been used in a wide variety of pharmaceuticals including general anesthetics, anti-epilepsy medication, anti-malaria medication, drugs for treating high blood pressure, and HIV medication.Reference of 39083-15-3

An Antiparasitic Compound from the Medicines for Malaria Venture Pathogen Box Promotes Leishmania Tubulin Polymerization was written by Ullah, Imran;Gahalawat, Suraksha;Booshehri, Laela M.;Niederstrasser, Hanspeter;Majumdar, Shreoshi;Leija, Christopher;Bradford, James M.;Hu, Bin;Ready, Joseph M.;Wetzel, Dawn M.. And the article was included in ACS Infectious Diseases in 2020.Reference of 39083-15-3 The following contents are mentioned in the article:

The few frontline antileishmanial drugs are poorly effective and toxic. To search for new drugs for this neglected tropical disease, we tested the activity of compounds in the Medicines for Malaria Venture (MMV) “Pathogen Box” against Leishmania amazonensis axenic amastigotes. Screening yielded six discovery antileishmanial compounds with EC50 values from 50 to 480 nM. Concentration-response assays demonstrated that the best hit, MMV676477(I), had mid-nanomolar cytocidal potency against intracellular Leishmania amastigotes, Trypanosoma brucei, and Plasmodium falciparum, suggesting broad antiparasitic activity. We explored structure-activity relationships (SAR) within a small group of MMV676477 analogs and observed a wide potency range (20-5000 nM) against axenic Leishmania amastigotes. Compared to MMV676477, our most potent analog, SW41, had ~5-fold improved antileishmanial potency. Multiple lines of evidence suggest that MMV676477 selectively disrupts Leishmania tubulin dynamics. Morphol. studies indicated that MMV676477 and analogs affected L. amazonensis during cell division. Differential centrifugation showed that MMV676477 promoted partitioning of cellular tubulin toward the polymeric form in parasites. Turbidity assays with purified Leishmania and porcine tubulin demonstrated that MMV676477 promoted leishmanial tubulin polymerization in a concentration-dependent manner. Analogs’ antiparasitic activity correlated with their ability to facilitate purified Leishmania tubulin polymerization Chem. crosslinking demonstrated binding of the MMV676477 scaffold to purified Leishmania tubulin, and competition studies established a correlation between binding and antileishmanial activity. Our studies demonstrate that MMV676477 is a potent antiparasitic compound that preferentially promotes Leishmania microtubule polymerization Due to its selectivity for and broad-spectrum activity against multiple parasites, this scaffold shows promise for antiparasitic drug development. This study involved multiple reactions and reactants, such as 5-Ethyl-6-methyl-2-thioxo-2,3-dihydropyrimidin-4(1H)-one (cas: 39083-15-3Reference of 39083-15-3).

5-Ethyl-6-methyl-2-thioxo-2,3-dihydropyrimidin-4(1H)-one (cas: 39083-15-3) belongs to pyrimidine derivatives. Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. Pyrimidine derivatives have been used in a wide variety of pharmaceuticals including general anesthetics, anti-epilepsy medication, anti-malaria medication, drugs for treating high blood pressure, and HIV medication.Reference of 39083-15-3

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia