Zachou, Kalliopi team published research in Liver International in 2022 | 554-01-8

COA of Formula: C5H7N3O, 5-Methylcytosine is a methylated form of the nucleobase cytosine occurring predominantly in cytosine-phosphate-guanine (CpG) islands that are produced by DNA methyltransferases and may regulate gene expression. Like cytosine, the DNA sequence containing 5-methylcytosine (5-mC) is able to be replicated without error and 5-mC can pair with guanine in double stranded DNA. However, DNA sequences containing a high local concentration of 5-mC may be less transcriptionally active than areas with higher ratios of unmodified cytosine.
5-Methylcytosine belongs to the class of organic compounds known as hydroxypyrimidines. These are organic compounds containing a hydroxyl group attached to a pyrimidine ring. Pyrimidine is a 6-membered ring consisting of four carbon atoms and two nitrogen centers at the 1- and 3- ring positions. 5-Methylcytosine exists as a solid, slightly soluble (in water), and a very weakly acidic compound (based on its pKa). Within the cell, 5-methylcytosine is primarily located in the cytoplasm. 5-Methylcytosine can be biosynthesized from cytosine. Outside of the human body, 5-methylcytosine can be found in tea. This makes 5-methylcytosine a potential biomarker for the consumption of this food product.
5-methylcytosine is a pyrimidine that is a derivative of cytosine, having a methyl group at the 5-position. It has a role as a human metabolite. It is a member of pyrimidines and a methylcytosine. It derives from a cytosine.
5-Methylcytosine is a nucleic acid that is found in the DNA and RNA of the cell. It is an important component of methylation, which is the process by which a methyl group is added to a molecule. This process can lead to cellular transformation, a process that can cause cancer. 5-Methylcytosine has also been shown as a molecular pathogenesis factor in infectious diseases such as HIV and herpes simplex virus type 1. The presence of 5-methylcytosine in nuclear DNA has been detected by analytical techniques such as gas chromatography/mass spectrometry (GC/MS). There are many analytical methods, including GC/MS, that can be used to detect 5-methylcytosine in cellular nuclei., 554-01-8.

Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. One of the three diazines (six-membered heterocyclics with two nitrogen atoms in the ring), it has the nitrogen atoms at positions 1 and 3 in the ring. 554-01-8, formula is C5H7N3O, Name is 4-Amino-5-methylpyrimidin-2(1H)-one. The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives, including the nucleotides cytosine, thymine and uracil, thiamine (vitamin B1) and alloxan. COA of Formula: C5H7N3O.

Zachou, Kalliopi;Arvaniti, Pinelopi;Lyberopoulou, Aggeliki;Sevdali, Eirini;Speletas, Matthaios;Ioannou, Maria;Koukoulis, George K.;Renaudineau, Yves;Dalekos, George N. research published 《 Altered DNA methylation pattern characterizes the peripheral immune cells of patients with autoimmune hepatitis》, the research content is summarized as follows. Little is known about the impact of DNA methylation modifications on autoimmune hepatitis (AIH) pathogenesis and therapeutic response. We investigated the potential alterations of DNA methylation in AIH peripheral lymphocytes at diagnosis and remission. Methods : Ten AIH patients at diagnosis (time-point 1; AIH-tp1), 8/10 following biochem. response (time-point 2; AIH-tp2), 9 primary biliary cholangitis (PBC) and 10 healthy controls (HC) were investigated. Peripheral CD19(+) and CD4(+) cells were isolated. Global DNA methylation (5mC)/hydroxymethylation (5hmC) was studied by ELISAs. mRNA of DNA methylation (DNMT1/3A/3B) and their counteracting hydroxymethylation enzymes (TET1/2/3) was determined by quant. RT-PCR. Epigenome wide association study (EWAS) was performed in CD4(+) cells (Illumina HumanMethylation 850 K array) in AIH and HC. Total 5mC/5hmC was also assessed by immunohistochem. (IHC) on paraffin-embedded liver sections. Results : Reduced TET1 and increased DNMT3A mRNA levels characterized CD19(+) and CD4(+)-lymphocytes from AIH-tp1 compared to HC and PBC, resp., without affecting global DNA 5mC/5hmC. In AIH-tp1, CD4(+) DNMT3A expression was neg. correlated with serum IgG (P = .03). In remission, DNMT3A decreased in both CD19(+) and CD4(+) cells compared to AIH-tp1 (P = .02, P = .03 resp.). EWAS in CD4(+) cells from AIH patients confirmed important modifications in genes implicated in immune responses (HLA-DP, TNF, lnRNAs and CD86). IHC showed increased 5hmC staining of periportal infiltrating lymphocytes in AIH-tp1 compared to HC and PBC. Conclusion : Altered TET1 and DNMT3A expressions, characterize peripheral lymphocytes in AIH. DNMT3A was associated with disease activity and decreased following remission. Gene DNA methylation modifications affect immunol. pathways that may play an important role in AIH pathogenesis.

COA of Formula: C5H7N3O, 5-Methylcytosine is a methylated form of the nucleobase cytosine occurring predominantly in cytosine-phosphate-guanine (CpG) islands that are produced by DNA methyltransferases and may regulate gene expression. Like cytosine, the DNA sequence containing 5-methylcytosine (5-mC) is able to be replicated without error and 5-mC can pair with guanine in double stranded DNA. However, DNA sequences containing a high local concentration of 5-mC may be less transcriptionally active than areas with higher ratios of unmodified cytosine.
5-Methylcytosine belongs to the class of organic compounds known as hydroxypyrimidines. These are organic compounds containing a hydroxyl group attached to a pyrimidine ring. Pyrimidine is a 6-membered ring consisting of four carbon atoms and two nitrogen centers at the 1- and 3- ring positions. 5-Methylcytosine exists as a solid, slightly soluble (in water), and a very weakly acidic compound (based on its pKa). Within the cell, 5-methylcytosine is primarily located in the cytoplasm. 5-Methylcytosine can be biosynthesized from cytosine. Outside of the human body, 5-methylcytosine can be found in tea. This makes 5-methylcytosine a potential biomarker for the consumption of this food product.
5-methylcytosine is a pyrimidine that is a derivative of cytosine, having a methyl group at the 5-position. It has a role as a human metabolite. It is a member of pyrimidines and a methylcytosine. It derives from a cytosine.
5-Methylcytosine is a nucleic acid that is found in the DNA and RNA of the cell. It is an important component of methylation, which is the process by which a methyl group is added to a molecule. This process can lead to cellular transformation, a process that can cause cancer. 5-Methylcytosine has also been shown as a molecular pathogenesis factor in infectious diseases such as HIV and herpes simplex virus type 1. The presence of 5-methylcytosine in nuclear DNA has been detected by analytical techniques such as gas chromatography/mass spectrometry (GC/MS). There are many analytical methods, including GC/MS, that can be used to detect 5-methylcytosine in cellular nuclei., 554-01-8.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia