The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives, 4595-59-9, formula is C4H3BrN2, Name is 5-Bromopyrimidine. including the nucleotides cytosine, thymine and uracil, thiamine (vitamin B1) and alloxan. Synthetic Route of 4595-59-9.
Zhang, Xuan;Nottingham, Kyle G.;Patel, Chirag;Alegre-Requena, Juan V.;Levy, Jeffrey N.;Paton, Robert S.;McNally, Andrew research published 《 Phosphorus-mediated sp2-sp3 couplings for C-H fluoroalkylation of azines》, the research content is summarized as follows. Fluoroalkyl groups profoundly affect the phys. properties of pharmaceuticals and influence almost all metrics associated with their pharmacokinetic and pharmacodynamic profile. Drug candidates increasingly contain trifluoromethyl (CF3) and difluoromethyl (CF2H) groups, and the same trend in agrochem. development shows that the effect of fluoroalkylation translates across human, insect and plant life. New fluoroalkylation reactions have undoubtedly stimulated this shift; however, methods that directly convert C-H bonds into C-CF2X groups (where X is F or H) in complex drug-like mols. are rare. Pyridines are the most common aromatic heterocycles in pharmaceuticals, but only one approach – via fluoroalkyl radicals – is viable for achieving pyridyl C-H fluoroalkylation in the elaborate structures encountered during drug development. Here we develop a set of bench-stable fluoroalkylphosphines that directly convert the C-H bonds in pyridine building blocks, drug-like fragments and pharmaceuticals into fluoroalkyl derivatives No preinstalled functional groups or directing groups are required. The reaction tolerates a variety of sterically and electronically distinct pyridines, and is exclusively selective for the 4-position in most cases. The reaction proceeds through initial formation of phosphonium salts followed by sp2-sp3 coupling of phosphorus ligands – an underdeveloped manifold for forming C-C bonds. Thus, e.g., treatment of 2-phenylpyridine with (fluoroalkyl)phosphine I, Tf2O and DBU afforded intermediate phosphonium salt (not isolated) which, upon treatment with TfOH, MeOH and water afforded II (89%).
4595-59-9, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., Synthetic Route of 4595-59-9
Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia