Synthesis of pyrimidine derivatives by the reaction of pyrylium salts with guanidine and compounds of its series was written by Zvezdina, E. A.;Zhdanova, M. P.;Dorofeenko, G. N.. And the article was included in Khimiya Geterotsiklicheskikh Soedinenii in 1980.Application In Synthesis of 4,6-Diphenylpyrimidin-2-amine This article mentions the following:
Treatment of pyrylium salts I (R = Ph, p-MeOC6H4, p-O2NC6H4; R1 = Ph) with H2NC(:NH)NH2.HBr gave 35-63% pyrimidinylpyridinium salts II. Pyrimidinum salts III (R = Ph, p-MeOC6H4) were obtained in 43 and 69% yield, resp. by reaction of I with methylguanidine nitrate. I and sulfanylguanidine gave pyridinium salts IV (R = R1 = Ph, Me). 1,2,4,6-Tetraphenylpyridinium perchlorate was obtained in 25% yield by reaction of I with PhNHC(:NPh)NH2. In the experiment, the researchers used many compounds, for example, 4,6-Diphenylpyrimidin-2-amine (cas: 40230-24-8Application In Synthesis of 4,6-Diphenylpyrimidin-2-amine).
4,6-Diphenylpyrimidin-2-amine (cas: 40230-24-8) belongs to pyrimidine derivatives. Heterocyclic compounds bearing the pyrimidine core are of tremendous interest as they constitute an important class of natural and synthetic compounds exhibiting diverse useful biological activities that hold attractive potential for clinical translation as therapeutic agents in alleviation of a myriad of diseases. We all know its importance to life – pyrimidine and purine bases are included in the structure of DNA and RNA.Application In Synthesis of 4,6-Diphenylpyrimidin-2-amine
Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia